

Teste de Tração de Ruptura e Análise da Degradação Temporal de Fibras Ópticas Biodegradáveis de Agar

Palavras - Chave: Fibra Óptica de Ágar, Biodegradável, Strain e Degradação.

Francisco Xavier R. Neto, IFGW, Unicamp Lidia de Oliveira Rosa, IFGW, Unicamp Prof. Dr. Eric Fujiwara, FEM, Unicamp

Prof. Dr. Cristiano M. B. Cordeiro (orientador), IFGW, Unicamp

RESUMO

Este trabalho aborda a fabricação e análise de fibras ópticas especiais biodegradáveis produzidas com agar, um ficocolóide acessível produzido a partir de algas marinhas e de fácil manipulação. Além de apresentar o processo de fabricação, também foram analisados aspectos de resistência mecânica do material, como ensaios de tração e elasticidade. Ademais, avaliamos alguns aspectos em respeito à degradação temporal de tais fibras. O processo de fabricação gerou fibras de 0,25mm e 1,5mm de diâmetro, sendo realizada a análise de strain e da degradação das fibras de 1,5mm. Foi notado que o strain médio de ruptura variou de 270 à 333 $m\varepsilon$. Os resultados obtidos indicam elevada potencialidade no uso das fibras ópticas de agar, uma vez aue sua biocompatibilidade e facilidade na fabricação instigam novos trabalhos acerca do tema.

1. INTRODUÇÃO

A utilização da luz para a transmissão de informações é marcada pelo photophone de Graham Bell em 1880. Este aparelho modulava sinais de luz solar que se possibilitando propagavam no ar, comunicação [1]. Atualmente, grande parte dos tecnológicos de dispositivos informação funcionam com o mesmo princípio, porém a modulação é da luz gerada por um laser e a propagação está em uma fibra óptica.

Nesse contexto. com vasto desenvolvimento no uso das fibras ópticas, o emprego de matérias-primas cada vez mais diversificadas torna-se interessante para, por exemplo, aplicações biomédicas. Diante disso, o agar é uma alternativa biodegradável e extremamente acessível comparado a materiais tradicionais utilizados na fabricação de fibras [2'3'4]. Estruturado por polissacarídeos, o ágar é um ficocolóide extraído de algas marinhas que se destaca por sua alta capacidade de gelificação e termoreversibilidade ^[5]. Neste sentido, o uso do agar para produção de fibras é inovador e moderno ^[5'6], sendo pioneiras algumas das pesquisas atuais dos nossos grupos de pesquisa na FEM (Laboratório de Materiais e Dispositivos Fotônicos) e no IFGW (Laboratório de Fibras Especiais & Sensores Ópticos) no tema.

Dessa forma, este trabalho apresenta uma perspectiva construtiva na abordagem das fibras de agar. Inicialmente, apresentamos o processo de fabricação das fibras. Posteriormente, avaliamos alguns de seus aspectos mecânicos, no que diz respeito a elasticidade do material submetido a uma tração. Por fim, analisamos a degradação dessas fibras, isto é, a perda de massa em função do tempo.

2. MATERIAIS E MÉTODOS

2.1 Fabricação das Fibras de Ágar

Inicialmente, como apresenta a *Figura 1*, foi preparada uma solução aquosa 2% ágar e 60% glicerol (em peso) - em diferentes soluções. A concentração do glicerol também foi alterada para 0% e 30%. A solução foi colocada sob aquecimento (~200 °C), com homogeneização constante. Após fervura, a mistura foi deixada em temperatura ambiente para dissipação das bolhas superficiais. Em seguida, realizamos a sucção do material por uma mangueira de silicone acoplada em uma seringa.

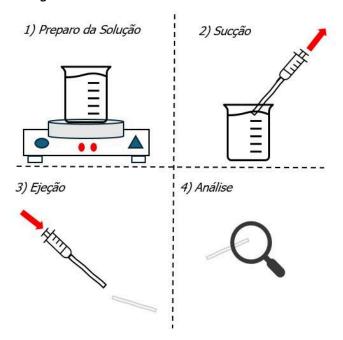


Figura 1: Fabricação das Fibras de Agar

Seguidos 20 minutos de espera para gelificação, o êmbolo da seringa foi fortemente pressionado, expulsando assim a fibra de agar. Posteriormente, a fibra foi armazenada em uma placa de Petri para futuras análises. Vale ressaltar que o procedimento em questão também foi realizado com mangueiras de diferentes dimensões, proporcionando assim, ao final da fabricação, fibras com diferentes diâmetros e diferentes concentrações de glicerol.

2.2 Ensaio de Tração - strain

aspectos dos importantes na utilização de qualquer material é a sua resistência mecânica. Nesse sentido, avaliado o comprimento percentual máximo que um fragmento de fibra de ágar pode atingir, isto é, o quanto é possível estender a fibra até a ruptura. A Figura 2 representa a montagem experimental na qual os dados foram coletados. Uma extremidade da fibra foi acoplada a um suporte metálico e a outra a um molde de impressão 3D. A fixação das extremidades da fibra ocorreu com a utilização de resina fluida fotocurável acrescida de cola instantânea.

O comprimento inicial entre os suportes (Lo) foi aferido com o uso de uma régua milimetrada e, ao tencionamos vagarosamente a fibra, após a ruptura, o comprimento final Lf também foi registrado.

Vale ressaltar que, embora a análise seja análoga, este procedimento foi realizado com as fibras de diferentes concentrações de glicerol - citadas anteriormente (0, 30 e 60%).

Visão Superior

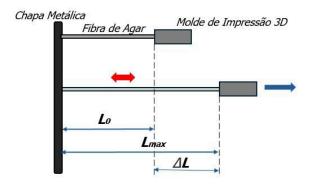


Figura 2: Montagem - Determinação Strain Máximo

Para a análise, foi realizado um teste de tração máximo que consistiu na determinação do parâmetro strain de ruptura (ε) de cada tipo de fibra. A determinação deste coeficiente seguiu o modelo da equação (1) na qual L_{max} e L_{o} correspondem aos comprimentos final e inicial, respectivamente, como apresentado na *Figura 2*.

$$\varepsilon = \frac{L_{max} - L_0}{L_0} \times 1000 ; [\varepsilon] = m\varepsilon \quad (1)$$

Após obtenção dos parâmetros strain de ruptura (obtidos a partir de uma média de cinco medidas) das fibras de diferentes concentrações de glicerol, com a equação (2) foi possível calcular o desvio padrão correspondente aos valores da concentração de glicerol nas fibras. O cálculo do desvio padrão procedeu com o uso da equação (2) apresentada abaixo.

$$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})}{n-1}}$$
 (2)

2.3 Análise da Degradação

A análise da degradação corresponde ao acompanhamento da variação de massa das fibras no tempo. Neste caso, com o uso de uma balança analítica, realizamos a medida da massa periodicamente. Ressalta-se que a degradação monitorada foi realizada para uma fibra com diâmetro de 1,5mm, com duas diferentes concentrações de glicerol: 0% e 60%.

Após a fabricação - descrito em 2.1-, as amostras foram dispostas em placas de petri e submetidas a um processo de pesagem em intervalos de 30 minutos. Dessa forma, tornou-se possível o registro da variação de massa em um intervalo total de 4,5 horas.

❖ 3. RESULTADOS E DISCUSSÃO

Foram fabricadas fibras de 1,5mm e de 0,25mm de diâmetro, com concentrações de 0, 30 e 60% glicerol, as quais posteriormente foram submetidas a análise microscópica. A *Figura 3* apresenta uma fibra produzida com 0,25mm de diâmetro. Destaca-se ainda que, no melhor do nosso conhecimento, este é o primeiro registro na literatura da produção de uma *fibra de agar* com espessura tão reduzida.

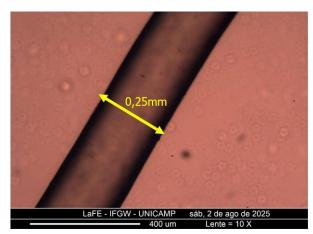


Figura 3: Fibra de Ágar - Diâmetro = 0,25mm

Ainda, como um registro extrínseco às fibras de ágar, a Figura 4 apresenta a fibra de 0,25mm de diâmetro conduzindo um feixe de um Laser HeNe 633 nm.

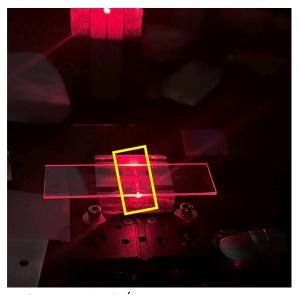
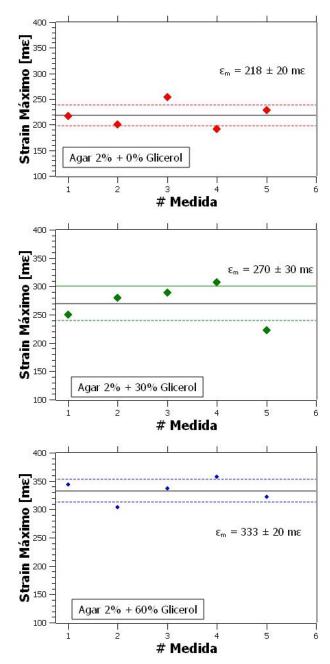
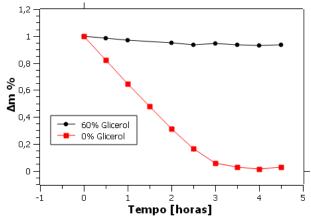



Figura 4: Fibra de Ágar - Laser HeNe = 633nm

No que diz respeito à determinação do parâmetro strain de ruptura, a análise nos diferentes tipos de fibra possibilitou a construção dos gráficos apresentados na *Figura 4*. Nota-se que, os níveis de glicerol presente na amostra estão diretamente relacionados à extensão máxima que esta pode ser alongada. O aumento do glicerol, além de gerar uma fibra com maior transparência [5], ocasiona também maior elasticidade, podendo fornecer maior resistência mecânica ao material.


Figura 5: Strain Máximo nas fibras 2% Agár + **A)** 0% glicerol **B)** 30% glicerol **C)** 60%glicerol

pontos demarcados nos gráficos representam os valores de strain obtidos em cada medida, relacionando-o assim, a cada concentração de glicerol utilizada. As linhas centrais correspondem ao strain médio (ϵ _)sobre a qual as linhas pontilhadas em cor representam o valor médio mais o desvio padrão dos dados (238 mε para fibras 0%glicerol; 300 $m\varepsilon$ paras as fibras 30% glicerol e 353 $m\varepsilon$ para as fibras 60% glicerol) e valor médio menos o desvio padrão (198 $m\varepsilon$ para

fibras 0%glicerol; 240 paras as fibras 30% glicerol e 313 $m\varepsilon$ para as fibras 60% glicerol).

Nas fibras com 0% glicerol foi observado um strain médio de 218 \pm 20 $m\epsilon$, em contrapartida, nas fibras com 30% glicerina nota-se um aumento significativo em tal coeficiente, atingindo assim um valor médio de 270 \pm 30 $m\epsilon$. E por final, a fibra com 60% glicerol conseguiu atingir um strain médio de 333 \pm 20 $m\epsilon$. Nota-se, assim, que a adição de glicerol aumenta em \sim 50% o strain de ruptura da fibra cujo diâmetro é de 1,5mm.

No que diz respeito à análise da degradação foi observado que a perda de massa no tempo também está diretamente relacionada à concentração de glicerol presente na fibra, uma vez que a amostra com 60% glicerol teve uma perda de massa desprezível quando comparada a uma fibra com 0% glicerol, analisadas em um mesmo intervalo de tempo. Estas informações podem ser observadas na Figura 5, onde nota-se que após 4,5 horas, a amostra com 0% glicerol perdeu toda a massa.

Figura 6: Degradação das Fibras no Tempo **Fonte:** Rosa, L.O. [SBFoton 2025] [10]

Importante ressaltar que, o estudo da degradação das fibras de agar é um importante meio para a compreensão de como estas se deterioram, podendo levar a melhorias em seu processo de fabricação, aumentando sua durabilidade e seu desempenho.

*** 4. CONCLUSÃO**

Mostramos a grande facilidade no processo de fabricação de fibras ópticas de ágar com diferentes concentrações de glicerol e diferentes diâmetros. A análise do strain de ruptura demonstra que a utilização do glicerol aumenta a resistência do material, o que facilita a sua utilização. O estudo inicial da degradação temporal mostra que o uso do glicerol também prolonga o tempo de utilização da amostra.

Os resultados apresentados são preliminares e um estudo mais sistemático no que diz respeito à degradação das fibras de ágar em diferentes meios (ar, vácuo, água...) poderá validar aplicações químicas e biomédicas. A alta biocompatibilidade das fibras ópticas de agar poderia ser, por exemplo, explorada na investigação de sondas para uso em aparelhos endoscópicos, sensoriamentos bioquímicos e fototerápicos [7,8].

AGRADECIMENTOS

Este trabalho está vinculado a financiamentos da Deape/SAE - Serviço de Apoio Estudantil e PRG - Pró-Reitoria de Graduação da Unicamp. Permanece reconhecimento a HENRIQUE, G.S por suas contribuições na fabricação de modelos 3D utilizados na montagem experimental.

REFERÊNCIAS

- [1] Molison, A. The Photophone. Nature 23, 78 (1880). https://doi.org/10.1038/023078a0.
- [2] Rosa, L. O.; Cordeiro C. M. B. and Fujiwara, E. "All-Biodegradable Agar-Core, Agar-Cladding Optical Fiber," 2024 SBFoton International Optics and Photonics Conference (SBFoton IOPC), Salvador, Brazil, 2024, pp. 1-3, doi: 10.1109/SBFotonIOPC62248.2024.10813498
- [3] Rosa, L. O.; Morais, E. F.; Cordeiro C. M. B. and Fujiwara, E. *"Biodegradable Ball Lenses made of Agar,*" 2023 International Conference on Optical MEMS and Nanophotonics (OMN) and SBFoton International Optics and Photonics Conference (SBFoton IOPC), Campinas, Brazil, 2023, pp. 01-02, doi: 10.1109/OMN/SBFotonIOPC58971.2023.10230920.
- [4] Rosa, L. O.; Cordeiro C. M. B. and Fujiwara, E. *"Salt-Doped Agar-Based Optical Fibers for Electric Current Sensing,"* 2024 Latin American Workshop on Optical Fiber Sensors (LAWOFS), Campinas, Brazil, 2024, pp. 1-2, doi: 10.23919/LAWOFS62242.2024.10560575
- [5] Fujiwara, E.; Oku, H. & Cordeiro, C.M.B. **"Recent developments in agar-based optical devices".** MRS Communications 14, 237–247 (2024). https://doi.org/10.1557/s43579-024-00558-z
- [6] Fujiwara, E.; Rosa, L. O.; Oku, H. et al. "Agar-based optical sensors for electric current measurements". Sci Rep 13, 13517 (2023). https://doi.org/10.1038/s41598-023-40749-7
- [7] Fujiwara, E.; Cabral, T.D. Sato, M. *et al.* "*Agarose-based structured optical fiber*". *Sci Rep* 10, 7035 (2020). https://doi.org/10.1038/s41598-020-64103-3
- [8] Fujiwara, E., Rosa, L. O., Oliveira, F. I., Guimarães, V. A., & Cordeiro, C. M. (2025, May). "Optical fiber-based sensing platform with integrated biodegradable agar-structured transducer". In 29th International Conference on Optical Fiber Sensors (Vol. 13639, pp. 749-752). SPIE.
- [9] Fujiwara, E., Rosa, L.O. **"Soft optical waveguides made of agar."** MRS Advances 9, 574–579 (2024). https://doi.org/10.1557/s43580-023-00750-8.
- [10] Rosa, L. O.; Xavier, F.R.N.; Fujiwara, E.; & Cordeiro, C.M.B. "Agar Optical Fibers Prepared by Dip Coating: Optical Characterization and Degradation Analysis". Submitted to SBFoton International Optics and Photonics Conference (SBFoton IOPC) 2025.