

Compostos Voláteis em Bebida de Caroços de Bacabinha: Comparação com o Café e com Bebidas Obtidas de Resíduos de Açaí

Palavras-Chave: Compostos Voláteis; Resíduos de frutas; Bebidas; Café; Açaí; Bacabinha

Autores(as):

Naiara Mori Silva, FEA – UNICAMP Adriana de Souza Lima, FEA – UNICAMP Stephanie Dias Soares, FEA-UNICAMP Cynthia Tereza Corrêa da Silva Miranda, FEA-UNICAMP Profa. Dra. Glaucia Maria Pastore, FEA – UNICAMP

INTRODUÇÃO:

Na biodiversidade brasileira, destaca-se a família Arecaceae, especialmente o gênero *Oenocarpus*, uma palmeira amazônica de frutos amplamente utilizados em comunidades locais. Apesar de seu potencial alimentar e comercial, a espécie ainda é pouco explorada e carece de estudos aprofundados (RODRIGUES et al., 2021). Seu processamento, que segue métodos tradicionais já aplicados a outras palmeiras, gera uma quantidade expressiva de resíduos. O caroço é o principal subproduto, podendo representar até 62,5% do peso do fruto, como ocorre na espécie *Oenocarpus minor*, mais conhecida como bacabinha (DE MENDONCA et al., 2008).

O grande volume de caroços descartados representa não apenas um desafio ambiental, mas também uma oportunidade econômica. Estudos recentes demonstram crescente interesse no reaproveitamento de resíduos agroindustriais, ricos em substâncias bioativas e com potencial para o desenvolvimento de produtos inovadores (BARROS et al., 2017). A valorização desses subprodutos contribui para a redução dos impactos ambientais e agrega valor à cadeia produtiva, sobretudo quando resultam em potenciais benefícios à saúde, conforme indicam dados preliminares obtidos em estudos conduzidos no Laboratório de Bioaromas e Compostos Bioativos da UNICAMP (dados ainda não publicados).

Atenta às novas demandas do mercado e às restrições regulatórias sobre aditivos sintéticos, a indústria de bebidas tem buscado inovação por meio do uso de ingredientes naturais, como extratos que conferem aroma e sabor, ampliando suas possibilidades de formulação (COELHO et al., 2015). Diversos estudos demonstram que o perfil de compostos voláteis em bebidas produzidas a partir de subprodutos agroindustriais é determinante para suas características sensoriais e de qualidade (MACHADO et al., 2018). Logo, o objetivo deste trabalho foi caracterizar o perfil de compostos voláteis da bebida de caroços de bacabinha e compará-lo aos perfis observados em bebidas como o café (*Coffea arabica*) e de resíduos de açaí (*Euterpe oleracea*).

METODOLOGIA:

Os frutos de bacabinha foram coletados em uma propriedade familiar localizada em Abaetetuba (PA), registrados no herbário da Universidade Federal do Pará (UFPA), sob o número 4235, e cadastrados no SISGEN (AC396A9). Como controles, foram utilizados frutos de açaí branco e roxo, também coletados na mesma propriedade e cadastrados no SISGEN (ACF1EDB), além de grãos de café gentilmente cedidos pela FEAGRI/UNICAMP e três amostras comerciais de pó de açaí, sendo uma adquirida em Manaus (C1) e duas em Belém (C2 e C3).

As amostras *in natura* (bacabinha e açaís) e os grãos de café foram acondicionados em embalagens escuras, transportados em caixas térmicas e armazenados a $-80\,^{\circ}$ C até o processamento. As amostras comerciais de pó de açaí foram armazenadas sob as mesmas condições logo após o recebimento. Para obtenção dos caroços de bacabinha e de açaí (branco e roxo), procedeu-se à remoção manual das polpas e fibras, seguida de lavagem em água corrente e secagem em estufa.

Em seguida, os caroços de bacabinha, de açaí e os grãos de café foram submetidos à torrefação sob condições específicas para cada matriz, resfriados à temperatura ambiente e moídos, sendo mantidos em embalagens metalizadas a –18 °C. Para todas as amostras, a extração aquosa foi realizada com água a 90 °C, na concentração de 10% (m/v), utilizando papel de filtro comum em suporte plástico. As etapas do processo de produção das bebidas amazônicas podem ser observadas na **Figura 1.**

Após a extração, os compostos voláteis foram isolados e identificados por cromatografia gasosa, conforme metodologia descrita por Van Den Dool e Kratz (1963). A análise foi realizada em um cromatógrafo a gás modelo Agilent 7890A (Agilent Technologies), acoplado a um espectrômetro de massas Agilent 5975C inerte MSD com detector de eixos triplos. A separação foi realizada em uma coluna DB-WAX (30 m \times 0,25 mm \times 0,15 μ m), utilizando-se gás hélio como arraste.

A identificação dos compostos foi feita por comparação dos espectros de massa com o banco de dados NIST 14.0 e pelo cálculo do Índice de Retenção Linear (LRI), determinado a partir de uma série de n-alcanos (C7–C40) injetados nas mesmas condições cromatográficas. O LRI foi calculado segundo a seguinte equação:

$$100 x \left[n + \frac{logt'_R(composto) - logt'_R(n)}{logt'_R(n+1) - logt'_R(n)} \right]$$

RESULTADOS E DISCUSSÃO:

A análise das bebidas comerciais de açaí (C1, C2 e C3) revelou a presença de 18 compostos voláteis em comum. Entre eles, destacam-se derivados de furano como furano, 2,5-dimetil-, furfural e acetato de 2-furanmetanol, aldeídos alifáticos como hexanal e decanal, além de outros compostos heterocíclicos aromáticos, como 3-metil-tiofeno, piridinas e benzofuranos.

Com base nos dados apresentados na **Tabela 1**, observou-se que apenas três compostos estão presentes em todas as sete amostras analisadas (C1, C2, C3, bacabinha, café, açaí roxo e açaí branco). Notavelmente, todos pertencem ao grupo dos derivados de furano, compostos orgânicos comumente associados a aromas adocicados e de torrefação, típicos de processos térmicos durante o preparo de alimentos (SPADA et al., 2021). Os compostos em questão são: 1-(2-furanoil) etanona, 5-metil-2-furancarboxaldeído e acetato de 2-furanmetanol.

Figura 1 - Fluxograma do processo de produção da bebida de caroço de bacabinha

Autoria própria, 2025

O furano (C₄H₄O) é um composto heterocíclico, incolor e altamente volátil. Sua formação está associada a processos térmicos, sendo comumente gerado durante o cozimento, a torrefação, a pasteurização e a esterilização. Sua ocorrência, em elevadas concentrações, é observada especialmente em produtos como café torrado, café solúvel e alimentos infantis, porém ser encontrado em molhos, sopas, snacks, biscoitos e diversos alimentos enlatados. As principais vias de formação dos furanos em bebidas estão relacionadas à degradação térmica de carboidratos e aminoácidos durante a Reação de Maillard e degradação de Strecker, respectivamente (SEOK et al, 2015).

As pirazinas são compostos heterocíclicos nitrogenados formados sobretudo como intermediários da Reação de Maillard, tendo sua origem na condensação de amino-cetonas derivadas da degradação da glicose na presença de aminoácidos (SPADA et al., 2021). Na análise dos sete extratos voláteis, detectamos pirazinas em quatro bebidas: Bacabinha, Café, Açaí roxo e Açaí branco. O café apresentou a maior diversidade de pirazinas, com sete compostos identificados, incluindo estruturas di- e trialquiladas com múltiplos grupos etil e metil. A bebida de bacabinha ocupou a segunda posição em diversidade, com seis pirazinas, seguida pelo açaí roxo (três) e pelo açaí branco (duas). Em contrapartida, nos controles C1, C2 e C3 não foram identificadas pirazinas. Esse achado sugere que a formação e detecção de pirazinas não está relacionada apenas à aplicação de calor, mas pode depender também de fatores como o perfil térmico controlado da torra, a composição inicial da matriz, o tempo de armazenamento e o grau de exposição ao oxigênio. As mais recorrentes, metilpirazina e etilpirazina, são amplamente reconhecidas por sua contribuição a notas sensoriais de nozes, chocolate e aromas tostados (SPADA et al., 2021), reforcando o papel desses compostos na definicão do perfil aromático característico do café e da bebida de bacabinha.

As piridinas no café são influenciadas pelo método de torra; seu excesso, ligado à contaminação por gases de combustão, é considerado um defeito, confere aroma desagradável e pode ser prejudicial à saúde se consumida em alta quantidade (GANCARZ, 2022). A presença de piridina nas amostras de Café, Açaí roxo, C1, C2 e C3 pode estar associada à formação por reações de Maillard durante torra, especialmente no caso do café, onde esse composto resulta da degradação da trigonellina (KONSTANTINIDIS et al., 2023). Em estudo sobre café torrado, a piridina oferece sabor mais pronunciado e pungentemente amargo e é detectada em concentrações mais elevadas em torra mais intensa (SENILA et al., 2023).

Os compostos fenólicos são importantes em muitos alimentos, eles conferem notas defumadas, picantes e amadeiradas (SPADA et al, 2021). O *Phenol* foi identificado nas amostras Bacabinha, Açaí roxo, Açaí branco e C3. O *Phenol*, 2-methoxy- (Guaiacol) foi encontrado na amostra C3, enquanto o *Phenol*, 4-ethyl-2-methoxy- foi identificado no café e nas bebidas de açaí roxo, C2 e C3.

Os ésteres são compostos tipicamente associados a aromas frutados e florais, cuja formação é frequentemente atribuída à atividade de leveduras durante a fermentação (SPADA et al., 2021). Com exceção da amostra C2, todas as amostras analisadas continham ésteres. Entre as sete matrizes investigadas, o éster etílico do ácido dodecanoico (*dodecanoic acid, ethyl ester*) foi identificado em quatro delas: Bacabinha, Café, Açaí roxo e Açaí branco, que também apresentou *benzoic acid, hydrazide*. C1 continha *octanoic acid, ethyl ester* e *benzoic acid, 2-hydroxy-, ethyl ester*, enquanto o *octanoic acid, 3-methylbutyl ester* foi detectado exclusivamente em C3. Esses achados indicam que a formação de ésteres não depende exclusivamente da fermentação.

Os aldeídos podem se originar tanto da oxidação de lipídios (gorduras), gerando aromas herbáceos, quanto da Reação de Maillard (aldeídos de Strecker), que produzem notas de malte e chocolate (MOREIRA; TRUGO; MARIA, 2000). Entre as sete matrizes analisadas, o decanal foi identificado em seis bebidas: Bacabinha, Café, Açaí branco, C1, C2 e C3. O benzaldeído esteve presente em cinco delas: Bacabinha, Café, Açaí roxo, Açaí branco e C3. O hexanal foi detectado em três amostras: C1, C2 e C3. Compostos como heptanal e 2-heptenal (Z) foram exclusivos da bebida C1, enquanto o 2-octenal (E) foi observado nas amostras C1 e C3, e o nonanal foi encontrado em C2 e C3.

Tabela 1 – Compostos voláteis identificados nas bebidas de bacabinha, café, açaí roxo, açaí branco e bebidas comerciais de açaí:

Bacabinha		Café		Açaí roxo		Açaí branco		C1		C2		СЗ	
Name	LRI												
Furan, 2,5-dimethyl-	790	Pyrazine	635	Furan, 2,5-dimethyl-	600	Furan, 2,5-dimethyl-	600	Furan, 2,5-dimethyl-	800	Furan, 2,5-dimethyl-	800	Furan, 2,5-dimethyl-	800
2-Vinylfuran	622	Pyridine	668	2-Vinylfuran	613	Acetoin	602	Toluene	800	2-Propanone, 1- hydroxy-	716	Toluene	800
Pyrazine	632	Pyrrole	677	Pyrazine	616	Pyrazine	618	Thiophene, 3- methyl-	800	Thiophene, 3- methyl-	763	Thiophene, 3- methyl-	800
2-Butenal, 2-methyl-	651	2,3-Hexanedione	724	Disulfide, dimethyl	630	3-Penten-2-one	625	Cyclopentanone	800	Acetoin	741	3-Hexanone	800
Furfural	842	3,4-Hexanedione	801	Pyridine	636	Oxazole, 4,5- dimethyl-	647	Pyridine	800	3-Hexanone	781	Pyridine	800
Pyrazine, methyl-	828	3(2H)-Furanone, dihydro-2-methyl-	809	Toluene	654	Toluene	837	Hexanal	801	Pyridine	770	Hexanal	800
Oxazole, trimethyl-	881	Pyrazine, methyl-	834	Thiophene, 3- methyl-	659	Thiophene, 3- methyl-	700	3(2H)-Furanone, dihydro-2-methyl-	810	Hexanal	800	3(2H)-Furanone, dihydro-2-methyl-	808
2-Furanmethanol	817	4-Methylthiazole	849	3(2H)-Furanone, dihydro-2-methyl-	804	3(2H)-Furanone, dihydro-2-methyl-	804	Furfural	840	3(2H)-Furanone, dihydro-2-methyl-	808	Furfural	836
2-Propanone, 1- (acetyloxy)-	820	Oxazole, trimethyl-	881	Pyrazine, methyl-	818	Pyrazine, methyl-	818	3-Hexen-2-one	844	Furan, 2- (methoxymethyl)-	828	2-Furanmethanol	866
Phenol	846	1H-Pyrrole, 2- methyl-	886	Furfural	835	Furfural	833	2-Furanmethanol	881	Furfural	839	Furfuryl formate	907
Cyclopent-4-ene- 1,3-dione	871	2-Furanmethanol	822	2-Furanmethanol	859	2-Furanmethanol	860	Heptanal	904	2-Propanone, 1- (acetyloxy)-	888	Ethanone, 1-(2- furanyl)-	911
Furfuryl formate	902	Pyridine, 3-methyl-	827	2-Propanone, 1- (acetyloxy)-	873	2-Propanone, 1- (acetyloxy)-	872	Furfuryl formate	909	Ethanone, 1-(2- furanyl)-	889	2(5H)-Furanone, 5- methyl-	945
Ethanone, 1-(2- furanyl)-	907	2-Propanone, 1- (acetyloxy)-	855	Phenol	943	Cyclopent-4-ene- 1,3-dione	884	Ethanone, 1-(2- furanyl)-	914	2(5H)-Furanone, 5- methyl-	947	Benzaldehyde	959
Pyrazine, ethyl-	914	2-Vinylfuran	865	Cyclopent-4-ene- 1,3-dione	884	Furfuryl formate	907	2(5H)-Furanone	931	2- Furancarboxaldehy de, 5-methyl-	965	2- Furancarboxaldehy de, 5-methyl-	965
2- Furancarboxaldehy de, 5-methyl-	936	Cyclopent-4-ene- 1,3-dione	881	Furfuryl formate	907	Ethanone, 1-(2- furanyl)-	911	2,5-Hexanedione	945	2-Acetyl-5- methylfuran	1003	2-Acetyl-5- methylfuran	997
2(5H)-Furanone, 5- methyl-	938	Furfuryl formate	908	Ethanone, 1-(2- furanyl)-	911	Butanoic acid, 4- hydroxy-	912	2(5H)-Furanone, 5- methyl-	919	Benzofuran	994	Methyl 2-furoate	977
Benzaldehyde	959	Ethanone, 1-(2- furanyl)-	913	2(5H)-Furanone, 5- methyl-	940	2(5H)-Furanone, 5- methyl-	940	2-Heptenal, (Z)-	959	2-Furanmethanol, acetate	997	Phenol	987
Pyrazine, 2-ethyl-6- methyl-	997	Pyrazine, ethyl-	915	Benzaldehyde	960	Benzaldehyde	959	2- Furancarboxaldehy de, 5-methyl-	967	Cyclotetrasiloxane, octamethyl-	1059	Benzofuran	994
2-Furanmethanol, acetate	998	Pyrazine, ethenyl-	928	2- Furancarboxaldehy de, 5-methyl-	964	2- Furancarboxaldehy de, 5-methyl-	965	Benzofuran	997	1-Propanone, 1-(2- furanyl)-	1009	2-Furanmethanol, acetate	997
Pyrazine, 2-ethyl-3- methyl-	1012	Dihydro-3-(2H)- thiophenone	949	2-Acetyl-5- methylfuran	994	Phenol	943	2-Furanmethanol, acetate	1000	2,2'-Bifuran	1039	Cyclotetrasiloxane, octamethyl-	1059
1-Propanone, 1-(2- furanyl)-	1031	Benzaldehyde	959	2-Furanmethanol, acetate	997	2-Furanmethanol, acetate	997	Cyclotetrasiloxane, octamethyl-	1007	Ethanone, 1-(1H- pyrrol-2-yl)-	1064	1-Propanone, 1-(2- furanyl)-	1009
2-Acetyl-5- methylfuran	1013	2- Furancarboxaldehy de, 5-methyl-	963	Cyclotetrasiloxane, octamethyl-	1004	Cyclotetrasiloxane, octamethyl-	1004	1-Propanone, 1-(2- furanyl)-	1012	Furan, 2,2'- methylenebis-	1090	2,2'-Bifuran	1039
2,2'-Bifuran	1016	2-Butanone, 1- (acetyloxy)-	971	1-Propanone, 1-(2- furanyl)-	1009	2-Acetyl-5- methylfuran	898	3-Octen-2-one	1043	Nonanal	1105	2-Octenal, (E)-	1059
Ethanone, 1-(1H- pyrrol-2-yl)-	1046	3(2H)-Thiophenone, dihydro-2-methyl-	987	D-Limonene	1028	2,2'-Bifuran	1039	2-Octenal, (E)-	1062	Benzofuran, 2- methyl-	1107	Furan, 2,2'- methylenebis-	1091
Pyrazine, 3-ethyl- 2,5-dimethyl-	1071	Pyrazine, 2-ethyl-6- methyl-	1000	2,2'-Bifuran	1039	Ethanone, 1-(1H- pyrrol-2-yl)-	1061	Ethanone, 1-(1H- pyrrol-2-yl)-	1069	1-Propanone, 1-(5- methyl-2-furanyl)-	1132	Phenol, 2-methoxy-	1089

Furan, 2,2'- methylenebis-	1078	2-Furanmethanol, acetate	1001	Ethanone, 1-(1H- pyrrol-2-yl)-	1061	Furan, 2,2'- methylenebis-	1090	Furan, 2,2'- methylenebis-	1088	Benzyl nitrile	1140	Nonanal	1105
Maltol	1110	Cyclotetrasiloxane, octamethyl-	1021	Pyrazine, 2,6- diethyl-	1082	2-Furanmethanol, 5- ethenyltetrahydro- α,α,5-trimethyl-, cis-	1098	Benzofuran, 2- methyl-	1110	Furan, 2-(2- furanylmethyl)-5- methyl-	1182	Benzofuran, 2- methyl-	1107
5H-5-Methyl-6,7- dihydrocyclopentap yrazine	1139	1H-Pyrrole-2- carboxaldehyde, 1- methyl-	1025	Furan, 2,2'- methylenebis-	1085	Benzoic acid, hydrazide	1095	Maltol	1117	Decanal	1206	1-Propanone, 1-(5- methyl-2-furanyl)-	1131
1H-Pyrrole, 1-(2- furanylmethyl)-	1184	1-Propanone, 1-(2- furanyl)-	1040	Maltol	1111	Maltol	1110	1-Propanone, 1-(5- methyl-2-furanyl)-	1135	Phenol, 4-ethyl-2- methoxy-	1280	Furan, 2-(2- furanylmethyl)-5- methyl-	1182
Decanal	1206	1H-Pyrrole-2- carboxaldehyde	1060	Furan, 2-(2- furanylmethyl)-5- methyl-	1182	2,6,6-Trimethyl-2- cyclohexene-1,4- dione	1144	Furan, 2-(2- furanylmethyl)-5- methyl-	1185			Decanal	1206
2-Isoamyl-6- methylpyrazine	1251	Ethanone, 1-(2- pyridinyl)-	1007	1H-Pyrrole, 1-(2- furanylmethyl)-	1184	1H-Pyrrole, 1-(2- furanylmethyl)-	1184	Benzaldehyde, 3- ethyl-	1196			Phenol, 4-ethyl-2- methoxy-	1280
Furan, 2,2'- [oxybis(methylene)] bis-	1324	2-Acetyl-5- methylfuran	1013	2-Isoamyl-6- methylpyrazine	1251	Decanal	1206	Octanoic acid, ethyl ester	1202			Furan, 2,2'- [oxybis(methylene)] bis-	1303
Dodecanoic acid, ethyl ester	1584	Benzeneacetaldehy de	1022	Phenol, 4-ethyl-2- methoxy-	1280	Furan, 2,2'- [oxybis(methylene)] bis-	1303	Decanal	1210			Octanoic acid, 3- methylbutyl ester	1448
		Ethanone, 1-(1H- pyrrol-2-yl)-	1050	Furan, 2,2'- [oxybis(methylene)] bis-	1324	Dodecanoic acid, ethyl ester	1596	Benzoic acid, 2- hydroxy-, ethyl ester	1275			5,9-Undecadien-2- one, 6,10-dimethyl-, (E)-	1454
		Ethanone, 1-(1- methyl-1H-pyrrol-2- yl)-	1065	Dodecanoic acid, ethyl ester	1590	Dodecanoic acid, ethyl ester	1596						
		Pyrazine, 3-ethyl- 2,5-dimethyl-	1071										
		Pyrazine, 2,6- diethyl-	1081										
		Maltol	1111										
		5H-5-Methyl-6,7- dihydrocyclopentap yrazine	1140										
		Pyrazine, 3,5- diethyl-2-methyl-	1159										
		1H-Pyrrole, 1-(2- furanylmethyl)-	1184										
		Decanal	1207										
		Benzeneacetaldehy de, .alpha ethylidene-	1274										
		Phenol, 4-ethyl-2- methoxy-	1280										
		Furan, 2,2'- [oxybis(methylene)] bis-	1324										
		Benzene, 4-ethenyl- 1,2-dimethoxy-	1369										
		Dodecanoic acid, ethyl ester	1585										
		Caffeine	1844										

CONCLUSÕES

A bebida desenvolvida a partir de caroços de bacabinha demonstrou possuir um perfil de compostos voláteis complexo e diversificado, com semelhanças significativas em relação às bebidas de café e açaí, especialmente no que diz respeito à presença de compostos oriundos de reações térmicas.

A identificação de derivados de furano, pirazinas, fenóis e ésteres evidencia que os processos aplicados, como a torrefação, foram eficazes em promover transformações químicas capazes de conferir características aromáticas desejáveis.

Esses achados reforçam o potencial do caroço de bacabinha como uma alternativa viável para o desenvolvimento de bebidas com perfil sensorial semelhante ao do café, contribuindo para o aproveitamento de resíduos agroindustriais e para a valorização de recursos nativos ainda pouco explorados.

BIBLIOGRAFIA

BARROS, Romy Gleyse Chagas; ANDRADE, Julianna Karla Santana; DENADAI, Marina; NUNES, Maria Lucia; NARAIN, Narendra. Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. **Food Research International**, [S. l.], v. 102, n. July, p. 84–92, 2017. 10.1016/j.foodres.2017.09.082. Disponível em: https://doi.org/10.1016/j.foodres.2017.09.082.

COELHO, E.; VILANOVA, M.; GENISHEVA, Z.; OLIVEIRA, J.M.; TEIXEIRA, J.A.; DOMINGUES, L. Systematic approach for the development of fruit wines from industrially processed fruit concentrates, including optimization of fermentation parameters, chemical characterization and sensory evaluation. LWT **Food Sci. Technol.** 2015, 62, 1043–1052.

DE MENDONÇA, Maria Silvia; DE OLIVEIRA, Andréia Barroncas; DE ARAÚJO, Maria Gracimar Pacheco; ARAÚJO, Lídia Medina. Morfo-anatomiado fruto e semente de Oenocarpus minor Mart. (Arecaceae). **Revista Brasileira de Sementes**, [S. l.], v. 30, n. 1, p. 90–95, 2008. 10.1590/s0101-31222008000100012.

GANCARZ, Marek; DOBRZAńSKI, Bohdan; MALAGA-TOBOłA, Urszula; TABOR, Sylwester; COMBRZYńSKI, Maciej; ĆWIKłA, Daniel; STROBEL, Wacław Roman; ONISZCZUK, Anna; KARAMI, Hamed; DARVISHI, Yousef. Impact of Coffee Bean Roasting on the Content of Pyridines Determined by Analysis of Volatile Organic Compounds. **Molecules**, [S.L.], v. 27, n. 5, p. 1559, 25 fev. 2022. MDPI AG. http://dx.doi.org/10.3390/molecules27051559.

KONSTANTINIDIS, N.; FRANKE, H.; SCHWARZ, S.; LACHENMEIER, D.W. Risk Assessment of Trigonelline in Coffee and Coffee By-Products. **Molecules** 2023, *28*, 3460. https://doi.org/10.3390/molecules28083460

MACHADO, E.; MUSSATTO, S.I.; TEIXEIRA, J.; VILANOVA, M.; OLIVEIRA, J. Increasing the Sustainability of the Coffee Agro-Industry: Spent Coffee Grounds as a Source of New Beverages. **Beverages** 2018, 4, 105. https://doi.org/10.3390/beverages4040105

MOREIRA, Ricardo Felipe Alves; TRUGO, Luiz Carlos; MARIA, Carlos Alberto Bastos de. Componentes voláteis do café torrado. Parte II. Compostos alifáticos, alicíclicos e aromáticos. **Química Nova**, [S.L.], v. 23, n. 2, p. 195-203, abr. 2000. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100-40422000000200010.

RODRIGUES, Silvane Tavares; GONÇALVES, Eunice; JOAQUIM, Macedo; GOMES, Ivanir. Características Morfométricas de Oenocarpus Mart., do Banco Ativo de Germoplasma da Embrapa Amazônia Oriental. **Boletim De Pesquisa E Desenvolvimento 153**, [S. 1.], 2021. Disponível em: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1137682/1/BDP153.pdf. Acesso em 02 ago 2025.

SENILA, M., KOVACS, E. AND SENILA, L. Essential and Nonessential Elements, Lipids and Volatile Compounds in Coffee and Transfer to Coffee Brews: Assessment of the Benefits and Potential Risks for Human Health. **Food Sci Nutr**, 13: e4640. https://doi.org/10.1002/fsn3.4640

SPADA, Fernanda Papa et al. Characterisation of the chocolate aroma in roast jackfruit seeds. **Food Chemistry**, [S.L.], v. 354, p. 129537, ago. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.foodchem.2021.129537.

SEOK, YJ., HER, JY., KIM, YG. *et al.* Furan in Thermally Processed Foods - A Review. **Toxicol Res. 31**, 241–253 (2015). https://doi.org/10.5487/TR.2015.31.3.241

VAN DEN DOOL, H.; KRATZ, P. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A, v. 11, p. 463–471, 1963.