

AVALIAÇÃO DO PRODUTO DA COMPOSTAGEM DE LODO PRIMÁRIO TRATADO COM COAGULANTE NATURAL

Palavras-Chave: Compostagem; Lodo de ETEs; Coagulante Natural.

Autores(as):

Sulamita de Jesus Carvalho, FT – UNICAMP

Prof. Dr. Marco Aurélio Soares de Castro (orientador), FT – UNICAMP

INTRODUÇÃO

A adoção de estratégias mais circulares em diversos sistemas e processos tem possibilitado que resíduos anteriormente considerados passivos ambientais se tornem potenciais fontes de recursos para retornar à cadeia de produção. No tratamento de águas residuárias, o lodo gerado em Estações de Tratamento de Esgoto (ETEs) é um exemplo desse potencial de reaproveitamento, pois contém altos teores de matéria orgânica e nutrientes – como fósforo (P) e nitrogênio (N) –, o que permite seu uso como condicionador do solo (DAL BOSCO et al., 2017).

No entanto, o gerenciamento tradicional do lodo envolve a adição de sais metálicos (como os de ferro ou alumínio) que, embora eficazes, aumentam a fração inerte do resíduo e apresentam riscos à saúde humana. Como alternativa, os coagulantes naturais e biofloculantes têm se destacado por serem biodegradáveis e menos tóxicos (SALEEM & BACHMANN, 2019).

A compostagem é uma técnica viável para a estabilização desses resíduos, promovendo a degradação da matéria orgânica por microrganismos em ambiente aeróbio, o que permite a inativação de patógenos e resulta em um composto estabilizado com valor agronômico (SILVA et al., 2004). O processo pode ser realizado em escala centralizada ou descentralizada e por diferentes formatos, como leiras ou o uso de recipientes. Quando realizada em composteiras de gaveta — estruturas empilhadas com caixas plásticas de fundo perfurado —, permite melhor controle da umidade, drenagem e oxigenação, fatores essenciais para o sucesso da decomposição.

Figura 1: Composteiras de gaveta.

Fonte: Autoria própria.

A Política Nacional de Resíduos Sólidos reconhece a compostagem como uma das formas ambientalmente adequadas de destinação de resíduos (BRASIL, 2010). A aplicação do composto no solo melhora sua estrutura, aeração e capacidade de retenção de água e nutrientes (INÁCIO & MILLER, 2009), podendo substituir fertilizantes sintéticos, cuja produção demanda elevado consumo energético.

Por outro lado, a aplicação do lodo no solo exige atenção a certas características que dificultam sua manipulação, como a presença de odores desagradáveis, microrganismos patogênicos, elementos tóxicos e baixa capacidade de desidratação (AISSE et al., 2001). Para tornar sua utilização mais segura, são necessárias etapas que promovam sua estabilização, como a adição de cal ou a compostagem. Ainda assim, a avaliação da toxicidade do composto final é indispensável, pois resíduos sem tratamento adequado podem conter metais e outras substâncias nocivas capazes de se acumular nos tecidos das plantas e comprometer seu desenvolvimento (ABREU JÚNIOR et al., 2005).

Nesse sentido, o objetivo deste trabalho é investigar a influência do lodo tratado com coagulantes naturais em um processo de compostagem, buscando determinar eventuais efeitos da utilização do composto resultante no cultivo de sementes.

METODOLOGIA

Foram coletadas amostras de lodo tratado com coagulante natural e resíduos orgânicos estruturantes, utilizadas na montagem das composteiras. Ao final do processo, o composto obtido foi submetido a um ensaio de germinação com sementes de alface (*Lactuca sativa*), utilizando-se o extrato aquoso para a avaliação da fitotoxicidade.

a. Delineamento experimental

A pesquisa foi realizada em duas fases, com uso de lodo tratado com coagulante natural e estabilizado em leito de secagem. Em ambas as fases, todas as caixas continham lodo tratado e resíduos estruturantes (poda, capina e serragem).

b. Condicionamento do lodo com coagulantes naturais e biofloculantes

Para o condicionamento do lodo primário, foi utilizado o biofloculante de *Psychrobater* sp., fornecido pelo Laboratório de Microbiologia Ambiental (LAMA) da UFSCar – Campus Sorocaba e extraído segundo protocolo modificado de Xia et al. (2022). O *Jar test* foi realizado com 1 L de esgoto por jarro, com as seguintes configurações: Mistura rápida de 2 minutos a 100 rpm, seguida da mistura lenta de 20 minutos a 30 rpm com adição do biofloculante, além de 30 minutos de sedimentação. O lodo obtido foi então encaminhado às composteiras.

c. Compostagem e monitoramento

Na Fase 1 (julho de 2024), os resíduos estruturantes foram picados manualmente com tesoura de poda e misturados ao lodo primário em duas caixas de compostagem. Nessa etapa, não foram utilizados restos de alimentos. O monitoramento foi feito por 10 dias consecutivos, com medições diárias de temperatura e observações sobre umidade e aparência.

Na Fase 2 (outubro a dezembro de 2024), o delineamento foi ampliado com três composteiras montadas em paralelo. Houve o uso de uma trituradora para redução da granulometria e otimização da decomposição. As medições de temperatura e umidade foram feitas três vezes por semana, acompanhadas de revolvimento e registros fotográficos. Os dados foram consolidados em um banco (.xlsx) estruturado por dia e período (manhã/tarde), onde se registraram as temperaturas do material

(superfície e interior), a temperatura ambiente e observações de aparência e umidade; esse banco permitiu analisar a evolução do processo em cada fase.

d. Determinação do teor de umidade

O teor de umidade das amostras foi determinado por secagem em estufa a 105 °C. Inicialmente, secaram-se cápsulas de alumínio vazias por 1 h, obtendo-se a massa de tara (M_0) . Em seguida, adicionou-se cerca de 10 g de material fresco a cada cápsula e registrou-se a massa inicial (M_1) . As cápsulas foram mantidas na estufa por 24 h, resfriadas em dessecador e pesadas novamente para obtenção da massa final (M_2) . A razão água/sólidos em base seca foi calculada conforme a equação (1):

$$w = \frac{M_1 - M_2}{M_2 - M_0} \tag{1}$$

A umidade em base úmida foi expressa pela equação (2):

$$U = \frac{w}{1+w} \times 100\% \tag{2}$$

E os sólidos totais pela equação (3):

$$ST = \frac{1}{1+w} \times 100\% \tag{3}$$

Todas as determinações foram realizadas em triplicata, e os resultados médios foram utilizados para a discussão comparativa entre as fases de compostagem.

e. Ensaio de fitotoxicidade

O extrato aquoso foi preparado com 100 g de composto em 400 mL de água deionizada, homogeneizado por 22 ± 2 horas em tumbler, centrifugado por 30 minutos a 3500 rpm e filtrado, se necessário. A extração foi realizada em triplicata.

Em placas de Petri esterilizadas com papel de filtro, foram adicionados 4 mL da solução e 20 sementes de alface por placa. As placas foram mantidas a 22 \pm 1 °C por cinco dias, considerando-se germinadas as sementes com radícula \geq 5 mm.

Figura 2: Ensaio de fitotoxicidade por extrato aquoso.

Fonte: Autoria própria.

f. Alterações metodológicas

A metodologia inicialmente previa o cultivo das sementes diretamente em substratos com diferentes proporções de terra e composto. No entanto, devido à heterogeneidade das amostras, optouse pela realização do ensaio com extrato aquoso em placas de Petri, visando maior controle experimental e reprodutibilidade.

RESULTADOS E DISCUSSÃO

Até o momento, o acompanhamento das composteiras permitiu identificar características do processo de compostagem do lodo tratado com coagulante natural. A redução de granulometria por meio de trituração mostrou-se benéfica, resultando em uma decomposição mais homogênea no interior das composteiras, o que sugere maior uniformidade nas condições microambientais e potencial melhoria na atividade microbiana responsável pela estabilização da matéria orgânica.

O monitoramento revelou oscilações na umidade do material, exigindo ajustes com acréscimo ou remoção de resíduos estruturantes para manter uma condição adequada para o processo aeróbio. Essa sensibilidade à umidade indica que o manejo ativo é necessário para evitar compactação ou excesso hídrico, ambos prejudiciais à oxigenação e à eficiência da compostagem.

As temperaturas observadas permaneceram dentro de faixas esperadas, sem atingir picos extremos, o que pode indicar um equilíbrio entre a geração de calor pela degradação microbiológica e a dissipação térmica nas composteiras.

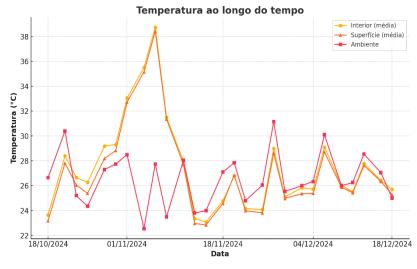


Figura 3: Perfil térmico das composteiras na Fase 2 (do material e do ambiente).

Fonte: Autoria própria.

Os cálculos a partir das planilhas indicam que, na Fase 1 (julho de 2024), a relação água/sólidos em base seca foi w \approx 10,47. Isso significa que havia cerca de 10,5 g de água para cada 1,0 g de sólidos secos, o que – convertido em base úmida – resulta em U \approx 91% e ST \approx 9%. Em termos operacionais, esse é um material muito úmido, com pouca fração estrutural efetiva; nessa condição, a difusão de oxigênio tende a ser limitada, há maior risco de compactação e formação de zonas com baixa aeração, exigindo correções frequentes.

Na Fase 2 (outubro a dezembro de 2024), obteve-se w ≈ 1,62, equivalente a U ≈ 62% e ST ≈ 38%. Ou seja, houve redução substancial da umidade e aumento da fração de sólidos em relação à Fase 1. Esse resultado é coerente com as mudanças de processo adotadas (uso de triturador para reduzir granulometria e manejo de umidade mais ativo).

O primeiro ensaio de germinação apresentou limitação devido à heterogeneidade das amostras compostadas, o que comprometeu a interpretação dos efeitos fitotóxicos. Em resposta, a metodologia foi ajustada para a extração aquosa do composto e realização do teste de fitotoxicidade em placas de Petri, aumentando o controle experimental e a reprodutibilidade do ensaio. A continuidade dos ensaios permitirá quantificar os efeitos do composto na germinação e no alongamento radicular, bem como relacioná-los a parâmetros físico-químicos como pH.

CONCLUSÕES

A compostagem do lodo tratado com coagulante natural, aliada à redução de granulometria, promoveu maior homogeneidade no processo de decomposição, o que potencialmente favorece a estabilização da matéria orgânica. O manejo da umidade revelou-se crítico para manter condições propícias à atividade aeróbia, exigindo ajustes dinâmicos. A mudança metodológica para avaliação da fitotoxicidade via extrato aquoso foi fundamental para contornar a variabilidade das amostras e garantir maior reprodutibilidade. Os próximos passos incluem a repetição dos testes de germinação com compostos mais uniformes, a medição do pH dos substratos e a análise quantitativa dos efeitos sobre o desenvolvimento inicial das sementes de alface. Esses resultados são essenciais para validar o potencial de reaproveitamento do composto como insumo agrícola seguro, contribuindo para estratégias de circularidade e redução de custos no manejo de lodo de ETEs.

BIBLIOGRAFIA

ABREU JÚNIOR, C. H.; BOARETTO, A. E.; MURAOKA, T.; et al. Uso agrícola de resíduos orgânicos potencialmente poluentes: propriedades químicas do solo e produção vegetal. **Tópicos Especiais em Ciência do Solo**. Viçosa: Sociedade Brasileira de Ciência do Solo, v.4, p.391-470, 2005.

AISSE, M. M.; FERNANDES, F.; SILVA, S. M. C. P. Aspectos tecnológicos e de Processos. In: ANDREOLI, C. V.; LARA, A. I.; FERNANDES, F. **Reciclagem de Biossólidos: transformando problemas em soluções**. p. 59-69. Curitiba: SANEPAR, Finep, 2001.

BRASIL. Lei n. 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos. **Diário Oficial da União**, Brasília, DF, 3 ago. 2010. Disponível em: https://www.planalto.gov.br/ccivil 03/ ato2007-2010/2010/lei/l12305.htm>. Acesso em: 25 jul. 2025.

DAL BOSCO, T. C.; GONÇALVES, F.; ANDRADE, F. C.; et al. Contextualização teórica: compostagem e vermicompostagem. In: Dal Bosco (org.) **Compostagem e vermicompostagem de resíduos sólidos: resultados de pesquisas acadêmicas**. p. 19-43. São Paulo: Blucher. ISBN 978-85-8039-237-1. 2017.

INÁCIO, C. T.; MILLER, P. R. M. **Compostagem**: ciência e prática para gestão de resíduos orgânicos. Rio de Janeiro: Embrapa Solos. 154 p. 2009.

SALEEM, M.; BACHMANN, R. T. A contemporary review on plant-based coagulants for applications in water treatment. **Journal of Industrial and Engineering Chemistry**, v. 72, p. 281–297, 2019.

SILVA, W. T. L.; SALLES, L. C.; NOVAES, A. P.; et al. **Potencialidade do uso de composto produzido a partir de lodo de esgoto urbano e poda verde de árvore**. Circular técnica 25. São Carlos: Embrapa Instrumentação Agropecuária, 2004. 5p. Disponível em: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/30169/1/CiT252004.pdf. Acesso em: 25 jul. 2024.

XIA, M.; ZHOU, H.; AMANZE, C.; et al. A novel polysaccharides-based bioflocculant produced by Bacillus subtilis ZHX3 and its application in the treatment of multiple pollutants. **Chemosphere**, v. 289, art. 133185, 2022. Disponível em: https://doi.org/10.1016/j.chemosphere.2021.133185. Acesso em: 25 jul. 2025.