

Implantação de metodologia de transformação de lentilha d'água

Palavras-Chave: Lentilhas d'água-1, Transformação genética-2, Gene GUS-3

Autores:

Heloísa P. BROLO¹, Ana Caroline de S. BARNABɹ, Renata K. ROCHA¹, Lucas N. DARIO¹, Pedro A. A. REPACHE², Helaine CARRER², Augusto D. LUCHESSI¹

- Laboratório de Biotecnologia BraPhyto, Faculdade de Ciências Aplicadas (FCA), Universidade
 Estadual de Campinas (UNICAMP).
- 2. Laboratório de Genônima e Biologia Molecular de Plantas, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP).

1. INTRODUÇÃO

As lentilhas d'água são macrófitas aquáticas podendo ser flutuantes ou submersas que crescem naturalmente em lagoas e lagos, servindo de alimento para animais como peixes e aves (Landolt, 1986; Sree et al., 2016; Appenroth et al., 2018). A subfamília Lemnoideae possui cinco gêneros: Lemna, Spirodela, Wolffia, Landoltia e Wolffiella (Less et al. 2002).

Estas plantas possuem a vantagem de serem cultivadas em ambientes controlados com baixo custo e que exigem poucos recursos naturais, tornando-as ideais para populações em que estes são limitados. Do ponto de vista nutricional, as lentilhas d'água apresentam alto valor proteico, com teores que variam de 20% a 35% por peso seco, além de serem ricas em ácidos graxos essenciais, como o ômega-3 (EPA e DHA), e micronutrientes como ferro e zinco (Appenroth *et al.*, 2016).

Sendo assim, este trabalho tem como objetivo a padronização de protocolo para a transformação estável da *Lemna japonica*, possibilitando a expressão heteróloga do gene GUS (marcador).

2. MATERIAL E MÉTODOS

2.1 Obtenção das macrófitas

A *L. japonica* (genótipo 145) foi doada pela Professora Dra. Helaine Carrer do Laboratório de Genômica e Biologia Molecular de Plantas, ESALQ-USP, Piracicaba-SP. A macrófita já estava sendo cultivada e preservada em meio *Murashige e Skoog* (MS) e apenas foi adaptada ao novo ambiente, o laboratório de Biotecnologia BraPhyto em Limeira-SP.

2.2 Indução de calos

A indução de calos foi realizada utilizando o meio *Callus Induction Medium Lemna* (CIML). O meio CIML consiste no meio MS suplementado com sacarose, contendo análogos de reguladores vegetais, como o ácido 2,4-diclorofenoxiacético (2,4-D) e thidiazuron (TDZ) e ágar. Esse meio foi distribuído em placas de Petri, as quais continham as frondes da *L. japonica* e foram incubadas sob o fotoperíodo de 16/8h e temperatura de 24°C durante 15 dias.

2.3 Multiplicação de calos

Em seguida, os *clusters* foram transferidos para o meio *Callus Maturation Medium Lemna* (CMML), contendo os reguladores vegetais 2,4-D e 6-benzilaminopurina (BAP), ficando em completo escuro (24h) e temperatura de 24°C, até estarem prontos para o primeiro teste de regeneração de calos para garantir que o protocolo de regeneração e nossas condições são efetivas para quando forem utilizados nas amostras submetidas a transformação. Esse processo durou cerca de quatro meses e meio.

2.4 Transformação vegetal e co-cultivo de calos

Para a realização da transformação vegetal, foi necessário primeiramente cultivar a bactéria *Agrobacterium tumefaciens* (cepa EHA105) transformada com o plasmídeo *pCAMex* (contendo o gene GUS) em meio *Luria-Bertani* (LB) contendo Kanamicina. Após 48 horas de incubação, as bactérias foram coletadas e transferidas para um tubo cônico de 50 mL com o meio *Acetosyringone-Containing Medium* (ACM). Em seguida, foi realizada a medida de absorbância em espectrofotômetro de microplaca até atingir o valor de 1,2 no comprimento de onda de 600 nm. Além disso, adicionou-se 100 mg/L aceto seringona e 0,001 % de Silwet L-77 uma hora antes da transformação, para otimizar a eficiência da transformação das células vegetais. Posteriomente, os tubos contendo os calos foram colocados em dessecadores a vácuo a -600 mmHg. A seguir, os calos foram distribuídos em placas de Petri contendo papel de filtro esterilizado em meio de co-cultivo CMML líquido, durante três dias em completo escuro (24h).

2.5 Seleção de calos transformados

Após 72h, os calos foram transferidos para placas de Petri com o meio de cultura de seleção *Selection Callus Culture Medium* (SCCM), o qual possui os reguladores vegetais 2,4-D e BAP e os antibióticos Higromicina e Cefotaxima. Em seguida, as placas foram incubadas sob o fotoperíodo de 16/8h e temperatura de 24°C por quatro semanas.

2.6 Regeneração de calos

Após as quatro semanas, os calos foram transferidos para o meio de regeneração Regeneration 8 Timentina Hygromycin (R8TH), o qual foi supmentado com os reguladores cinetina e ácido indol-3-acético (AIA) e com os antibióticos higromicina e timentina. Essas placas também ficaram sob o fotoperíodo de 16/8h e temperatura de 24°C com troca de meio a cada quatro semanas. Após formação de frondes, elas foram trocadas para o meio MS sólido para crescerem e então serem transferidas novamente para o meio MS líquido.

3. RESULTADOS E DISCUSSÃO

As etapas, previamente descritas, até a seleção de calos já foram concluídas, enquanto a etapa de regeneração ainda está ocorrendo devido ao tempo necessário para que realmente os calos se tornem frondes completas e por isso ainda não foi realizada a Reação em Cadeia da Polimerase (PCR) para confirmação da transformação, o qual está em processo de padronização no laboratório. As etapas estão exemplificadas na figura abaixo (Figura 1).



Figura 1: Etapas do processo de transformação genética de *L. japonica*: a: *L. japonica* cultivada em meio MS líquido. b: *L. japonica* no meio de multiplicação de calos logo após a indução. c: *L. japonica* em processo de regeneração após transformação genética com o gene GUS. d: teste de regeneração bemsucedido em *L. japonica* não transformada (para fins de validação do protocolo).

Para a realização do estudo, foi utilizada a lentilha d'água *Lemna japonica* que apresentou ótimo cultivo em meio MS. Essa espécie foi previamente descrita como *Lemna minor*, mas em 2021, com um estudo mais detalhado sobre a genotipagem das lentilhas d'água, passou a ser reconhecida como um clone híbrido interespecífico 9252 (Braglia *et al.*, 2021). Ela possui um amplo espectro de condições de cultivo como ampla faixa de pH e tolerância abiótica, resistência e adaptabilidade (Chakrabarti *et al.*, 2018; Catelani *et al.*, 2021).

Os processos de indução e multiplicação de calos são cruciais para uma transformação bem sucedida uma vez que a transformação direta de tecidos complexos (como folhas) é ineficiente em monocotiledôneas como a *L. japonica*. Além da quantidade, também é importante a

qualidade como características de calos friáveis, de coloração clara e textura granular. A multiplicação de calos aumenta a população de células potencialmente transformáveis, deste modo a obtenção de eventos de integração estável do gene é ampliada (Cantó-Pastor *et al.*, 2014; Firsov *et al.*, 2015; Liu *et al.*, 2019). No presente estudo, a indução de calos foi viável com o uso de reguladores vegetais como o 2,4-D, BAP e TDZ. A combinação destes reguladores já foi utilizada para indução de calos em *Lemna minor* (Yamamoto *et al.*, 2001; Cantó-Pastor *et al.*, 2014).

A transformação a partir da *Agrobacterium* juntamente com o uso da aceto seringona é eficiente, pois induz os genes de virulência (*vir*) responsáveis pela transferência do T-DNA para a célula vegetal (Liu *et al.*, 2019).

Para a seleção, há a aplicação de um agente seletivo diretamente sobre os calos, como os antibióticos que permitem a identificação precoce dos eventos de transformação bem sucedidos, reduzindo o número de regenerantes falsos-positivos e aumentando a eficiência do processo. Além disso, o processo de seleção é importante, causando redução no tempo e recursos gastos com regeneração de tecidos não úteis, garantindo homogeneidade nos eventos que seguirão (Cantó-Pastor et al., 2014; Firsov et al., 2015; Heenatigala et al., 2018; Liu et al., 2019). Ao ser positiva a seleção, ocorre o processo de regeneração com a utilização de meio de cultivo suplementado com reguladores de crescimento vegetal, como citocininas e auxinas, que são responsáveis pela formação de brotos e replicação celular (Cantó-Pastor et al., 2014).

4. CONCLUSÃO

A transformação genética de *Lemna japonica* representa uma ferramenta promissora para o avanço de estudos em fisiologia vegetal, produção de biomassa e biotecnologia. A adoção de protocolos eficientes tem possibilitado o desenvolvimento de linhagens geneticamente estáveis e funcionalmente expressivas. Considerando as características de *L. japonica*, como rápido crescimento, facilidade de cultivo *in vitro* e alta adaptabilidade, a transformação genética dessa espécie amplia significativamente seu potencial para produção de proteínas recombinantes, fitorremediação e melhoramento genético.

5. BIBLIOGRAFIA

- APPENROTH, K. *et al.* Nutritional value of duckweeds (Lemnaceae) as human food. **Food Chemistry**, v. 217, p. 266-273, 15 fev. 2017. DOI 10.1016/j.foodchem.2016.08.116. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0308814616313565. Acesso em: 28 jul. 2025.
- APPENROTH, K. *et al.* Nutritional Value of the Duckweed Species of the Genus Wolffia (Lemnaceae) as Human Food. **Front. Chem.**: Sec. Crop Biology and Sustainability, [s. l.], v. 6, 28 out. 2018. DOI https://doi.org/10.3389/fchem.2018.00483. Disponível em: https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2018.00483/full. Acesso em: 28 jul. 2025.
- BRAGALIA, L. et al. New Insights into Interspecific Hybridization in Lemna L. Sect. Lemna (Lemnaceae

- Martinov). **Plants (Basel),** 21 dez. 2015. DOI 10.3390/plants10122767. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC8703825/. Acesso em: 28 jul. 2025.
- CANTÓ-PASTOR, A. *et al.* Efficient transformation and artificial miRNA gene silencing in Lemna minor. **Plant Biol (Stuttg)**: Special Issue: Duckweed Research and Application, v. 17, ed. 1, p. 59–65, 2 jul. 2014. DOI https://doi.org/10.1111/plb.12215. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/plb.12215. Acesso em: 28 jul. 2025.
- CARDOSO, C. C. *et al.* Study of the effects of Lemna minor extracts on human immune cell populations. **Eur Rev Med Pharmacol Sci**, ed. 1, p. 43-48, 25 dez. 2021. DOI https://doi.org/10.26355/eurrev_202112_27332. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34890033/. Acesso em: 28 jul. 2025.
- CHAKRABARTI, R. *et al.* Mass Production of Lemna minor and Its Amino Acid and Fatty Acid Profiles. **Front. Chem.**: Sec. Crop Biology and Sustainability, v. 6, 14 out. 2018. DOI https://doi.org/10.3389/fchem.2018.00479. Disponível em: https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2018.00479/full. Acesso em: 28 jul. 2025.
- FIRSOV, A. *et al.* High-Yield Expression of M2e Peptide of Avian Influenza Virus H5N1 in Transgenic Duckweed Plants. Molecular Biotechnology, v. 57, p. 653–661, 15 mar. 2015. DOI https://doi.org/10.1007/s12033-015-9855-4. Disponível em: https://link.springer.com/article/10.1007/s12033-015-9855-4. Acesso em: 28 jul. 2025.
- HEENATIGALA, P. P. M. *et al.* Development of Efficient Protocols for Stable and Transient Gene Transformation for Wolffia Globosa Using Agrobacterium. **Front Chem**, v. 6, p. 227, 21 jun. 2018. DOI https://doi.org/10.3389/fchem.2018.00227. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC6022245/. Acesso em: 28 jul. 2025.
- LANDOLT, E. **The family of Lemnaceae Monographic study**. Veröffentlichungen des Geobotanischen Institutes der Eidgenössischen Technischen Hochschule. 1986. 638 p. v. 4.
- LES, D. H. *et al.* Phylogeny and Systematics of Lemnaceae, the Duckweed Family. **Systematic Botany**, v. 27, ed. 2, p. 221–240, 2002. Disponível em: https://people.clas.ufl.edu/rkimball/files/Lesetal.2002.SystBotany.pdf. Acesso em: 28 jul. 2025.
- LIU, Y. et al. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis. **Plant Biotechnology Journal**, v. 17, ed. 11, p. 2143-2152, 10 abr. 2019. DOI https://doi.org/10.1111/pbi.13128. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/pbi.13128. Acesso em: 28 jul. 2025.
- ON-NOM, N. *et al.* Wolffia Globosa-Based Nutritious Snack Formulation with High Protein and Dietary Fiber Contents. **Foods**, v. 12, ed. 14, p. 2647, 9 jul. 2023. DOI https://doi.org/10.3390/foods12142647. Disponível em: https://www.mdpi.com/2304-8158/12/14/2647. Acesso em: 28 jul. 2025.
- SREE, K. S.; BOG, M.; APPENROTH, K. Taxonomy of Duckweeds (Lemnaceae), Potential New Crop Plants. **Emirates Journal of Food and Agriculture**, v. 28, ed. 5, p. 291-02, 4 nov. 2017. DOI https://doi.org/10.9755/ejfa.2016-01-038. Disponível em: https://ejfa.me/index.php/journal/article/view/1038. Acesso em: 28 jul. 2025.
- YAMAMOTO, Y. T. *et al.* Genetic transformation of duckweed Lemna gibba and Lemna minor. **In Vitro Cellular & Developmental Biology Plant**, v. 37, p. 349–353, 2001. DOI https://doi.org/10.1007/s11627-001-0062-6. Disponível em: https://link.springer.com/article/10.1007/s11627-001-0062-6. Acesso em: 28 jul. 2025.