

PROJETO E CONSTRUÇÃO DE UM SISTEMA DE ESTIMULAÇÃO PARA INTERFACE CÉREBRO-COMPUTADOR BASEADA EM POTENCIAIS EVOCADOS VISUALMENTE EM RITMO ESTACIONÁRIO

Palavras-Chave: BCI, SSVEP, CCA

Autores(as): Raphael do Espírito Santo Nascimento, FEEC – UNICAMP Prof. Dr. Rafael Ferrari (orientador), FEEC - UNICAMP

INTRODUÇÃO:

Nesta iniciação científica, primeiramente, foi realizado um estudo teórico para adquirir uma visão geral sobre CCA e sua aplicação em BCI-SSVEP. A partir daí, foi desenvolvido um sistema para a produção de estímulos cintilantes para BCI-SSVEP por meio de um monitor LED com frequências distintas e configuráveis com o objetivo de possibilitar o estudo da fase e outros parâmetros do sinal na evocação presente no EEG. Para isso, um programa foi desenvolvido e construído e foi projetado um sistema embarcado que controla os estímulos e que se comunica com um computador para transferir os registros de fase e frequência de interesse. Por fim, foram realizados testes para a validação do sistema construído.

METODOLOGIA:

1. Estudo Dirigido

Para o sistema BCI baseado em SSVEP, primeiro temos de definir como será feito o estímulo visual que será captado posteriormente. Em um projeto anterior [1], foram utilizadas matrizes de LEDs onde cada matriz acendia e apagava em uma frequência específica. Para aperfeiçoar o sistema de estimulação, neste projeto, foram criados estímulos em um monitor LED, que alteram sua luminosidade de forma senoidal, pois pesquisas [2] apontam que desta forma o usuário do sistema apresenta menos fadiga visual, além de ser mais fácil de se mudar a forma e posição do estímulo.

Em seguida é feita a captura do sinal de eletroencefalograma (EEG) por meio de eletrodos secos que são alocados em regiões específicas do escalpo, em geral na região occipital, que é a região onde a resposta aos estímulos é mais forte [3], com seus valores sendo digitalizados e amplificados.

Por fim, devemos fazer o processamento dos sinais adquiridos, que poderiam ser feitos por vários métodos, sendo comumente utilizado a transformada rápida de Fourier (FFT) ou análise de componentes independentes (ICA). Porém, para esta pesquisa será utilizada a análise de correlação canônica (CCA), que é um método consagrado na literatura e que geralmente é usado como referência de desempenho.

Este tipo de análise utiliza um conjunto x(t) que contém amostras de EEG gravadas conhecidas e rotuladas, que serão utilizadas para o treinamento, juntamente com um conjunto y(t) correspondente a senos e cossenos com a frequência fundamental ao do sinal EEG do conjunto x(t) e até 3 harmônicas desta frequência, conforme figura (1).

Sendo f a frequência fundamental e t a amostra dividido pelo período de amostragem, que neste projeto foi de 250 Hz. Nota-se que existirá um vetor y(t) para cada frequência possível na matriz de estímulos.

A partir da matriz de sinais de EEG e do vetor de senos e cossenos, é criada uma matriz que concatena os valores de x(t) e y(t) conforme exibido na figura abaixo:

$$V = \begin{pmatrix} x_1(t_0)x_2(t_0) \dots x_{64}(t_0)y_1(t_0)y_2(t_0) \dots y_N(t_0)y_N(t_0) \\ x_1(t_1)x_2(t_1) \dots x_{64}(t_1)y_1(t_1)y_2(t_1) \dots y_N(t_1)y_N(t_1) \\ \vdots \\ x_1(t_M)x_2(t_M) \dots x_{64}(t_M)y_1(t_M)y_2(t_M) \dots y_N(t_M)y_N(t_M) \end{pmatrix}$$

Temos que o sub índice de x(t) representa o canal (eletrodo) do EEG e como foi utilizada a base de dados pública de [2] para estudo e testes iniciais, na qual eram utilizados 64 canais, foi demonstrado na imagem até esse valor, porém a touca utilizada para captura de sinais de EEG utilizada na pesquisa possuía somente 8 canais. O sub índice de y(t) indica qual a harmônica, está sendo utilizada, conforme indicado na figura 1. O índice M indica a quantidade total de amostras, que pode ser calculado ainda por 'tempo da medição * taxa de amostragem'.

A matriz V pode ser usada para estimar as matrizes de covariância dos sinais

$$S = \frac{1}{M+1} * \left(V^T V - \frac{1}{M+1} V^T \mathbf{1}_M \mathbf{1}_M^T V \right) = \begin{pmatrix} C_{XX} C_{XY} \\ C_{YX} C_{YY} \end{pmatrix}$$

Figura 3 - Transformação de V em S

Deste modo, temos que C_{XX} corresponde à matriz de autocovariância de x(t), C_{YY} é a matriz de autocovariância de y(t) e $C_{XY} = C_{YX}^{T}$ é a matriz de covariância entre x(t) e y(t).

A partir destas matrizes de covariância estimadas, calculamos a matriz K. A partir da decomposição em valores singulares (K) de K, os filtros associados à CCA podem ser obtidos, conforme demonstrado na sequência de equações a seguir.

$$K = C_{XX}^{-0.5} C_{XY} C_{YY}^{-0.5}$$
$$K = \Gamma \Lambda \Delta^{T}$$

Figura 5 - Sequência de Equações Necessárias para encontrar os filtros

Após o cálculo dos filtros, o sinal de SSVEP pode ser estimado a partir da correlação entre dois conjuntos, que pode ser calculada conforme a figura 6. Será então obtido um valor de correlação canônica, ρ, para cada vetor y(t), sendo que o maior ρ estará atrelado à frequência com a maior probabilidade de estar ativa (frequência do estímulo para o qual o usuário está focando a atenção) na janela de tempo analisada.

2. Sistema de Estimulação

Figura 4 - Uso do CCA em um sinal EEG e Harmônicas do sinal de estímulo [2]

Para o sistema, apesar de ser programado utilizando

um monitor LED de 24.5" (Agon AG251FZ2) com uma taxa de atualização de 240 Hz e resolução de 1920x1080 pixels para a apresentação dos padrões cintilantes e uma GPU RTX2060, da NVIDIA, foram feitas as aquisições utilizando um notebook Acer Nitro 5 AN515-52-52BW, com uma tela de 15.6" e taxa de atualização de 60 Hz.

Foi então utilizado o conjunto de pacotes Psytoolbox para Octave, que consegue sincronizar as atualizações dos estímulos com a atualização do monitor, o que garante que o método usado posteriormente, de análise de correlação canônica estará com a mesma fase dos estímulos.

Os estímulos apresentam formato retangular parametrizado para terem tamanhos variados, dependendo da quantidade de estímulos horizontais (K_x) e verticais (K_Y) que se deseja exibir na tela simultaneamente, de acordo com a figura 7.

Figura 6 - Posicionamento dos estímulos na tela

Na Figura 7, Bx e By correspondem à distância dos estímulos até a borda, com valor igual a 50 pixels. Ex e Ey são a distância entre cada retângulo, com um tamanho de 25% de Rx e Ry, respectivamente, onde estes últimos são o tamanho do estímulo.

Como a quantidade de estímulos em cada linha e coluna são parametrizadas, o tamanho de Rx e Ry são calculados da seguinte maneira:

$$R_{x} = (X - 2 * B_{x} - (K_{x} - 1) * E_{x})/K_{x}$$
$$R_{y} = (Y - 2 * B_{y} - (K_{y} - 1) * E_{y})/K_{y}$$

Ao iniciar a execução do programa no Octave, é enviada para um Arduino UNO a instrução para iniciar as aquisições utilizando a placa de biossensores Cyton, que será utilizada posteriormente para validação do sistema. O Arduino UNO é empregado na sincronização do sistema de estimulação com o sistema de aquisição do EEG. O tempo em que cada estímulo permanece piscando e o tempo de pausa entre os estímulos é parametrizado também, para que possam ser obtidos os melhores resultados entre obter um número suficiente de amostras para análise e ao mesmo tempo não cansar visualmente o usuário do sistema.

3. Aquisições

Para as aquisições, foram escolhidas as frequências conforme a tabela 1 abaixo, de modo que as frequências de 12, 14 e 16Hz possuíssem as mesmas fases e posições que o estudo de [1] e que as demais frequências tivessem uma defasagem de π para as frequências verticalmente ortogonais e ao menos $\pi/2$ para as demais posições, o que pode ser observado na figura 8.

Frequência [Hz]	Fase [rad/s]
11	3π/2
12	0
13	0
14	π/2
15	π
16	π

Tabela 1 - Frequências escolhidas para aquisição

Figura 7 - Posição de cada estímulo, com sua frequência e fase sendo exibida

Foram então realizadas 5

sessões de aquisição, com o foco dirigido para cada uma das frequências por 10 segundos, com o estímulo alternando entre 1 segundo ativo e 1 segundo de descanso.

RESULTADOS E DISCUSSÃO:

Com os dados adquiridos, foi criado um tensor de tamanho 8x250x6x25, onde cada dimensão representa

a quantidade de eletrodos, o tamanho de cada janela de estimulação, a quantidade de frequências e a quantidade de janelas, respectivamente. Durante a retirada das janelas com o estímulo ativo, notamos que o Arduino utilizado para sincronização não funcionou adequadamente, fazendo com que as janelas tivessem mais amostras que o esperado. Por conta disso, foi utilizado somente as primeiras 250 amostras do estímulo. O tensor então foi dividido em 80% para treinamento dos filtros do CCA e 20% para a validação, sendo que foram feitas todas as combinações para obter uma média melhor de acertos. A matriz de confusão pode ser observada na figura 9.

	Estímulo Predito							
Estímulo Ativo	/	А	В	С	D	Е	F	
	A	9	5	2	3	4	2	
		36%	20%	8%	12%	16%	8%	
	В	4	6	10	0	2	3	
		16%	24%	40%	0%	8%	12%	
	С	8	10	3	2	2	0	
		32%	40%	12%	8%	8%	0%	
	D	0	1	7	10	2	5	
		0%	4%	28%	40%	8%	20%	
	E	5	1	4	3	4	8	
		20%	4%	16%	12%	16%	32%	
	F	4	1	1	4	5	10	
		16%	4%	4%	16%	20%	40%	

Figura 8 - Matriz de Confusão da análise feita com o filtro CCA

Notamos a partir da diagonal principal da matriz de confusão, que

as taxas de acerto não passam dos 40%, o que leva a uma piora em relação ao uso do painel de LED. As possibilidades sobre essa queda da taxa de acertos podem ter se dado a falha de sincronismo por conta do Arduino, ao uso de uma tela com taxa de atualização e brilhos mais baixos que a testada anteriormente [4] e ao usuário estar apresentando fadiga.

CONCLUSÕES:

Por conta dos resultados obtidos, percebemos que será necessário melhorar o sistema para garantir a sincronicidade e refazer as aquisições, para podermos garantir a eficiência ou não do sistema com monitor de LED comparado ao projeto com painéis de LED [1].

BIBLIOGRAFIA

- [1] M. Ribeiro, "Aquisição de sinais EEG para BCI-SSVEP usando um sistema de baixo custo Cyton Biosensing Board," *Iniciação Científica UNICAMP*, 2023.
- [2] M. I. X. C. X. G. I. S. G. F. I. Yijun Wang, "A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces".
- [3] S. N. C. Leite, "Contribuições ao desenvolvimento de interfaces cérebro-computador baseadas em potenciais evocados visualmente em regime estacionário," *Diss. Tese de Doutorado, UNICAMP*, 2016.
- [4] W. P. X. G. &. Y. W. Meng Gu, "An open dataset for human SSVEPs in the frequency range of 1-60 Hz," p. 2024.