

ANÁLISE PETROGRÁFICA DAS ROCHAS DE ALTA PRESSÃO DA UNIDADE QUIXERAMOBIM (CE)

Palavras-Chave: Agulhas de Rutilo, Metamorfismo de Alta Pressão, Unidade Quixeramobim

Autores(as): Gustavo Henrique de Oliveira Pereira, IG – UNICAMP Prof. Dr. Ticiano José Saraiva dos Santos (orientador), IG – UNICAMP Dr. Robert de Lima Muniz (coorientador), IG – UNICAMP

INTRODUÇÃO:

A Unidade Quixeramobim, área de estudo do presente trabalho, está situada na porção norte da Província Borborema, na borda sudeste do Domínio Ceará Central (DCC) (Figura 1). O DCC é limitado a SE pela Zona de Cisalhamento Senador Pompeu, separando-o do domínio Rio Grande do Norte; a NW, pela Z.C Sobral-Pedro II, separando-o do domínio Médio Coreaú e a Oeste é encoberto pelas rochas sedimentares da Bacia do Parnaíba. Segundo Trompette (1994), a estruturação atual do Domínio Ceará Central relaciona-se aos eventos deformacionais ocorridos no final do Ciclo Brasiliano/Pan Africano, após

a colisão continental que aconteceu durante a formação do supercontinente Gondwana Ocidental.

A Unidade Quixeramobim, de idade neoproterozoica, é composta por xisto, paragnaissse, rochas calcissilicáticas. anfibolito, metavulcânicas félsicas, quarzito e mármore (Parente et al, 2008). Ainda segundo os autores, os xistos apresentam textura lepidoblástica com crenulação ressaltadada por microdobramentos das micas. Os

Figura 1: Mapa regional do Domínio Ceará Central, destacando a Unidade Quixeramobim. Adaptado de Pinéo (2020).

paragnaisses geralmente são representados por biotita \pm muscovita gnaisse e biotita \pm silimanita \pm cianita \pm granada gnaisse. Os mármores, por sua vez, são essencialmente dolomíticos. Os quartzitos possuem

composições variadas, podendo ser puros, sacaróides, ferruginosos ou micáceos com muscovita e biotita, enquanto as rochas calciossilicáticas ocorrem com textura fina e isotrópica ou grossa porfiroblástica.

A Unidade se alonga na direção NE-SW, com foliação de baixo a médio mergulho para SE. Na porção leste, a Unidade é delimitada pela Zona de Cisalhamento Sabonete-Inharé. A oeste, a Unidade Quixerambim cavalga os paragnaisses Paleoproterozoico do Complexo Algodões.

A disposição da Unidade metassedimentar Quixeramobim num contexto de rochas de arco Paleoproterozoico, tornam seu estudo do ponto de vista petrográfico e metamórfico, essencial para compreensão da evolução tectônica do Domínio Ceará Central. Assim, o objetivo desse trabalho é estudar petrograficamente as rochas da Unidade Quixeramobim, visando caracterizar minerais e/ou texturas que possam indicar as condições de pressão e temperatura atuantes nas mesmas.

METODOLOGIA:

O presente trabalho iniciou-se com um levantamento bibliográfico sobre a região da área de estudo. Foram consultados artigos, teses e dissertações que serviram de base para uma maior compreensão da geologia da área e da natureza das lâminas que seriam examinadas.

Em sequência foi utilizado o microscópio ótico de luz transmitida para descrever as 16 lâminas oriundas da Unidade Quixeramobim. Essa descrição teve como objetivo caracterizar associações minerais presentes, texturas metamórficas e inclusões minerais.

Após descrição dessas lâminas foi possível agrupá-las em unidades litológicas a partir da presença de minerais índices do metamorfismo, como granada, biotita e cianita. Essa etapa foi realizada a fim de compreender qual o grau metamórfico experimentado por cada uma das lâminas e como elas estavam relacionadas entre si.

Com a descrição petrográfica também foi possível identificar uma feição que direcionou o trabalho posterior, ou seja, agulhas de rutilo inclusas na granada. Devido as dimensões muito pequenas dessas agulhas e a importância das mesmas na interpretação das condições barométricas do metamorfismo, tornou-se necessário caracterizar as mesmas com maior precisão, fazendo-se uso do microscópio eletrônico de varredura e espectroscopia Raman.

RESULTADOS E DISCUSSÃO:

Com o estudo petrográfico foram individualizados 7 litotipos: clorita-biotita xisto, biotita xisto, granada-biotita xisto, cianita-granada-biotita xisto, cianita-biotita xisto, clorita-granada-biotita xisto e cálcio-silicáticas. Ênfase também foi dada à caracterização de feições texturais que indiquem condições de alta pressão e até mesmo, de ultra alta pressão. As características desses litotipos foram resumidas na Tabela 1.

Litotipo	Amostras	Assembleia Mineral	Aspectos gerais
Clorita-biotita xisto	TJEL-14	Quartzo (45%), Biotita (20%), Muscovita (10%), Microclínio (5%), Plagioclásio (5%), Clorita (5%), Ilmenita (5%).	xistosidade, granulação média a fina
Biotita xisto	TJEL-8, TJEL-45B, TJEL-6B, TJEL-15A, TJEL-18, TJEL-15B	Quartzo (15-55%), Biotita (10-50%), Muscovita (5-30%), Plagioclásio (10-20%), Microclínio (10-20%), Ilmenita (0-5%), Hornblenda (0-3%), Titanita (0-10%), Rutilo (1%), Turmalina (0-2%), Apatita (0-1%), Zircão (0-1%).	xistosidade, granulação média a fina, textura lepidoblástica e granoblástica
Granada-biotita xisto	TJEL-3, TJEL-23, TJ20-3B	Granada (1-20%), Biotita (20-30%), Quartzo (15- 40%), Plagioclásio (15-20%), Ilmenita (0-5%), Microclínio (0-15%), Apatita (0-5%), Muscovita (10-30%), Rutilo (0-2%).	xistosidade, granulação média a grossa, textura granoblástica e porfiroblástica, possíveis inclusões de agulhas de rutilo.
Cianita- granada-biotita xisto	TJEL-4	Muscovita (40%), Biotita (20%), Granada (3%), Quartzo (30%), Apatita (2%), Cianita (2%), Ilmenita (3%).	xistosidade, granulação média, textura granoblástica e lepdoblástica
Cianita-biotita xisto	TJEL-84	Muscovita (15%), Biotita (40%), Quartzo (40%), Cianita (5%).	xistosidade, granulação média a fina, textura lepidoblástica e granoblástica
Clorita- granada-biotita xisto	TJ20-3C	Granada (35%), Quartzo (10%), Plagioclásio (5%), Biotita (35%), Muscovita (5%), Ilmenita (5%), Clorita (5%)	xistosidade, granulação média, textura lepdoblástica
Cálcio- silicáticas	TJ20-1A, TJEL-98	Granada (0-40%), Quartzo (5-30%), Hornblenda (0-5%), Plagioclásio (0-5%), Ilmenita (0-1%), Titanita (0-5%), Zoisita (5- 10%), Clinozoisita (5-10%), Calcita (0-1%), Diopsídeo (5-30%), Rutilo (0-1%), Olivina (0- 30%), Augita (0-30%), Turmalina (0-1%), Clinocloro (2%), Allanita (0-30%), Microclínio (0-5%), Zircão (0-5%).	granulação média, textura maciça

Tabela 1: Características petrográficas dos litotipos individualizados.

O Granada-biotita xisto apresenta feições que inicialmente se assemelham com inclusões de rutilo. Elas estavam alojadas nos porfiroblastos de granada de textura poiquiloblástica (Figura 2).

Com o intuito de comprovar que as feições observadas se tratavam de agulhas de rutilo, a lâmina TJ20-3B foi submetida à Espectroscopia Raman. O resultado obtido pode ser observado no gráfico da Figura 3. O gráfico é formado por linhas cinzas, que representam os picos vibracionais da Granada, e linhas vermelhas, identificando o sinal do Rutilo. É possível observar um pico próximo à 440 cm⁻¹ onde os dois sinais não ocorrem simultaneamente, possibilitando individualizar apenas o sinal do Rutilo.

Figura 2: Agulhas de rutilo observadas na porção demarcada no quadrado vermelho da figura no canto superior direito. As agulhas estão orientadas em NW-SE.

Figura 3: Resultado da Espectroscopia Raman realizada sobre a lâmina TJ20-3B.

Figura 4: Mapeamento das agulhas de Rutilo observadas.

CONCLUSÕES:

Dessa forma, a identificação de possíveis rochas de alta pressão na Unidade de Quixeramobim pode indicar diretamente grandes eventos tectônicos, como uma zona de subducção continental, que movimentou um material até profundidades mantélicas e posteriormente exumada para porções crustais. Isto seria de ampla importância para reconstrução de modelos geotectônicos dessa porção do Gondwana Ocidental.

BIBLIOGRAFIA

Trompette, R. 1994. Geology of Western Gondwana, Pan African-Brasiliano aggregation of South America and Africa. Rotterdam: A. A. Balkema. 350 p.

Parente, C. V.; Almeida, A. R. de; Arthaud, M. H. 2008. Geologia da folha Quixeramobim SB. 24-VD-III.

Esse pico representa o espectro vibracional característico do espectro Raman do Rutilo, comprovando sua presença na lâmina examinada.

Além de gerar espectros vibracionais, o equipamento também mapeou a imagem Figura 2 destacando os campos onde o rutilo foi identificado, possibilitando observar melhor as agulhas (Figura 4).

Sua comprovação é um passo importante para o avanço dessa pesquisa, entretanto destaca-se que não é o suficiente. Dessa forma, o próximo passo será examinar essas feições no Microscópio Eletrônico de Varredura e posteriormente submeter essa lâmina novamente à técnica de Espectroscopia Raman, para buscar identificar maiores ocorrências dessas agulhas ao longo da lâmina.