

3C-CO₂ - CONTABILIZAÇÃO, CONTROLE E PROPOSTA DE CONTENÇÃO DE EMISSÕES DE CO₂ EM ÁREAS URBANAS

Palavras-chave: Medição de CO₂, Compensação, Áreas Urbanas

Autores(as):

CAIO CERCEAU NANNI, COTUCA-UNICAMP GIOVANA FULAN BONACIN, COTUCA-UNICAMP RAFAEL PÊRA CAMPOS, COTUCA-UNICAMP

PROFA. DRA. HELOISA HELENA MÜLLER (orientadora), COTUCA- UNICAMP PROF. ESP. DANIEL RINALDI MENDONÇA (co-orientador), COTUCA-UNICAMP

INTRODUÇÃO

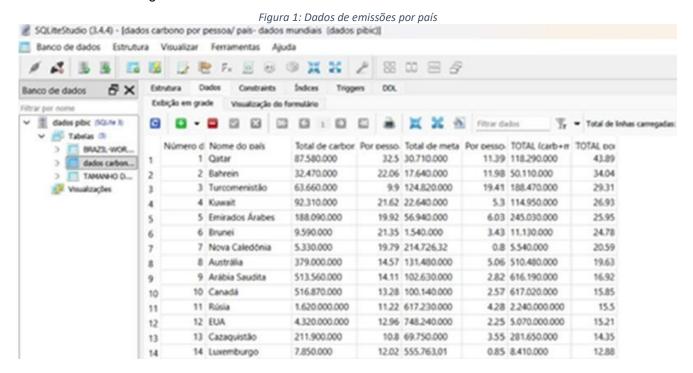
O aumento das emissões de dióxido de carbono (CO₂) na atmosfera é um grande problema atualmente, causando alterações climáticas e ambientais, como por exemplo o aquecimento global (SILVA, 2022). Essa maior concentração de CO₂ é gerada por vários fatores, seja pela emissão de frota de veículos, indústrias, usinas termelétricas entre outros meios (BERNI, 1998), (BBC NEWS Brasil, 2021). O uso de plantas para combater a poluição atmosférica é uma ferramenta importante, onde se implementada desde cedo podemos amenizar os problemas causados por conta do aquecimento global (IBF, 2020), (IBF, 2021).

O aplicativo desenvolvido tem como objetivo conscientizar o usuário mostrando quanto é gerado de CO₂ em determinada região seja do trajeto de carro ou em uma área urbana. Além destas estimativas, são apresentadas opções de elementos arbóreos para plantio na região próxima e a quantidade necessária a ser plantada.

METODOLOGIA

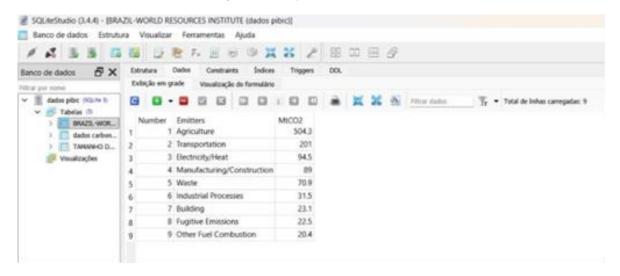
Estudo da origem do CO₂: para a realização do projeto, foi necessária a criação de frentes que estudassem a origem dos gases emitidos, visto que cada categoria polui em diferentes níveis, como será abordado adiante. A partir da média desses valores, é possível realizar a compensação e sequestro de dióxido de carbono com uma precisão satisfatória.

Estimativa de emissões em áreas urbanas: é um elemento importante para o projeto, a partir de estimativas de emissões por setores sendo dividido em Industrial, Agrícola e Urbana. Além da quantidade que um habitante emite por ano, é possível aproximar quanto de carbono é produzido por uma dada área selecionada.


Estimativa de emissões de frota de veículos: tendo o conhecimento do modelo do carro e o quanto ele percorreu, a partir de um banco de dados, é possível estimar quanto de CO₂ ele emitiu, sendo um dado importante para estimar o acúmulo desse gás na região.

Estudo dos biomas: foi desenvolvido uma base de informações contendo diversas espécies da flora de diferentes biomas, contendo não só informações sobre o sequestro de CO2 pelas plantas, mas também as características necessárias para ela sobreviver no ambiente, por exemplo, a quantidade de chuvas necessária no ano, pH do solo. Portanto, a partir desses dados é possível selecionar quais são as melhores candidatas para a compensação na área determinada.

Compensação: a partir dos dados de emissão e biomas, serão eleitas áreas candidatas para o plantio de plantas nativas do bioma daquela região, sendo preferencialmente próximo aos locais emissores.


RESULTADOS E DISCUSSÃO

Para que fosse possível aproximar quanto uma área emite de CO₂, foram realizadas pesquisas que informaram quanto é emitido pelo país por ano e, também, uma estimativa de quanto um habitante de um dado país produz (GE; FRIEDRICH; VIGNA, 2021). Para a realização da criação desse banco de dados, foi utilizado informações dos Dados Mundiais, e do Ministério da Ciência, Tecnologia e Inovação (DADOS MUNDIAIS, 2024) (MCTI,2021). Na primeira coluna é o número atribuído ao país e a segunda o nome dele, sendo mais fácil de consultar caso seja preciso. Já as colunas escrito "TOTAL", nelas são contidas o valor numérico da emissão total. Por fim, as colunas escritas "por pessoa" trata-se da média de cada uma das emissões conforme Figura 1.

Outra informação necessária foi a quantidade de CO₂ que cada setor emite, e para isso foram utilizados dados do site World Resources Institute (WRI, 2020), que traz informações de quanto é emitido por cada um deles por ano, sendo possível, então, categorizar a origem conforme Figura 2.

Figura 2: Dados por setor econômico

A base de informações sobre os elementos arbóreos possui diversas informações para o planejamento do plantio de determinada planta, sendo estas retiradas da biblioteca da EMBRAPA (EMBRAPA, 2024), e de outras fontes de informação (AREVALO; ALEGRE; VILCAHUAMAN, 2002), (USP-ESALQ, 2024), (CARMO LIMA et al, 2019), (ROBORTELLA, 2010). Metodologia para onde tem-se dados como pH do solo, chuva necessária, entre outros fatores como altura média, diâmetro do tronco. Assim o usuário pode escolher o melhor tipo de planta e ver as necessidades de que cada uma precisa para conseguir fazer uma compensação adequada para a situação, conforme Figura 3.

, .						Figura 3: D	aaos aa						
ca (mm)		pHsolo	DensidadeMadeira	DAP(m)		asca(m) Di	Ft	Volu		liomassa (Tonelada		ArmazenamTotal	TrocaAnual
		5.5	0,65		0,3	0,008	0,308	0,09243	0,72595	0,471		225,553	45,111
		4.2	0,69		0,4	0,008	0,408	0,16323	1,41021	0,973		465,115	93,023
	12		0,63		0,5	0,012	0,512	0,25607	3,01675	1,900		908,463	181,693 1010,899
	16	5.2	0,53		0,3	0,016 0,007	1,016 0,307	1,01613 0,09212	19,95142 0,72354	10,574 0,492		5054,493 235,178	47,036
	25		0,68		0,55	0,007	0,575	0,31656	2,98350	2,058		984,018	196,804
	20		0,5		2	0,023	2,02	4,04020	95,19398	47,597		22751,361	4550,272
		5.2	0,75		0,7	0,007	0,707	0,49492	7,77418	5,830		2787,042	557,408
	15		0,78		0,5	0,015	0,515	0,25761	1,61861	1,262		603,483	120,697
		4.8	0,33		0,4	0,005	0,405	0,16201	2,54486	0,839		401,426	80,285
		6.1	0,75		0,6	0,008	0,608	0,36483	5,73071	4,298		2054,459	410,892
		5.2	0,38		2	0,006	2,006	4,01202	78,77497	29,934		14308,686	2861,737
		5.6	0,88		1	0,008	1,008	1,00803	21,37585	18,810		8991,539	1798,308
	15		0,66		0,7	0,015	0,715	0,50061	4,71811	3,114		1488,470	297,694
		5.4	0,73		0,7	0,008	0,708	0,49563	5,83897	4,262		2037,449	407,490
	15		0,9		0,6	0,015	0,615	0,36911	3,47877	3,130		1496,566	299,313
	30		0,99		1	0,03	1,03	1,03045	10,52097	10,415		4978,732	995,746
	8	5.7	0,76	5	0,35	0,008	0,358	0,12533	1,27965	0,972		464,871	92,974
	8	5.4	1		1	0,008	1,008	1,00803	19,79246	19,792	5 19792,46	9460,794	1892,159
	12	6.1	0,68	3	0,5	0,012	0,512	0,25607	2,61451	1,777	9 1777,87	849,821	169,964
	17	4.8	0,77	7	0,8	0,017	0,817	0,65374	17,97055	13,837	3 13837,33	6614,242	1322,848
	16	3.9	0,4	1	0,25	0,016	0,266	0,06663	0,20932	0,083	7 83,73	40,021	8,004
	12	6.8	0,5	5	0,8	0,012	0,812	0,64967	20,40984	10,204		4877,951	975,590
		4.2	0,56		0,3	0,008	0,308	0,09243	0,72595	0,406		194,323	38,865
	22		0,67		3,5	0,022	3,522	12,32724	677,71848	454,071		217046,121	43409,224
		6.4	3,0		0,6	0,008	0,608	0,36483	2,86535	2,292		1095,711	219,142
			1 85 1			-							
	Α	E		D		E	F	G		Н	1		
1	ID	Nome	DAP (cm)				Folha (cm²)	Solo	Bioma Frequ		PreciptAdequada(m		
2		Açoita-cav				te/Centro-Oeste		argilo-arenoso	Cerrado/Ca	-		1000	
3	2	Anga de F			Sudeste	2		arenoso-ácido	Mata-Atlânt			1800	
4	3	Angico	50	15	Sul		60	arenoso-úmido	Mata-Atlânt	tica		1500	
5	4	Baguaçu	100	25	Sul/Sud	leste	108	argiloso	Mata-Atlânt	tica/Cerrado		2200	
6	5	bugreiro	30	10	Sul/Sud	leste	23	Qualquer	Mata-Atlânt	tica/Pampa		1300	
7	6	Cambara	55	12	Sul/Sud	leste	35	argilo-arenoso	Mata-Atlânt	tica		1500	
8	7	Canjarana	200	30	Sul/Sud	leste	700	argiloso	Mata-Atlânt	tica		2300	
9		Cuvata	70		Sul/Sud			Qualquer	Mata-Atlânt			2000	
10		Dedaleiro				Oeste/Sudeste		argilosa	Cerrado/Par			1600	
11		Embauba	40			Oeste/Sudeste		arenosa		tica/Cerrado		1800	
12		Faveira	60		Nordes				Caatinga	tica/cerrado		1100	
13								argiloso		er co			
		Figueira-B			Sul/Sud	ieste		Qualquer	Mata-Atlânt	пса		2200	
14		Grapia	100		Sul			argilosa	Qualquer			1500	
15		Guarapere			Sul/Sud			franca-argilosa	Mata-Atlânt			1500	
16		Ingá-Cipo			Norte/S			Brejo-argiloso		tica/Amazônia		1800	
47	10	1 A	-1- 00	13	C1/C	1	70		K 4-4- A412-4	M		1000	

As informações sobre emissões de CO₂ por veículo encontra-se na Figura 4, um compilado de dados do governo canadense que foi usado como exemplo (PODDER, 2024). Essa tabela contém as informações de consumo de combustível e liberação de dióxido de carbono por carro, sendo possível pegar dados de carros específicos ou gerando médias a partir de características do carro (motor, tipo do carro, tipo de combustível). Esses dados serão usados no cálculo de emissão por rota do Google Maps, podendo dar uma estimativa do consumo em sua rota ou em um conjunto de rotas.

1	Make	Model	Vehicle Class	Engine Size(L)	Cylinders	Transmission	Fuel Type	Fuel Consumptic Fuel	Consumptic Fuel	Consumptic Fuel (Consumptic Cylin	ders
2	ACURA	ILX	COMPACT	2		4 AS5	Z	9.9	6.7	8.5	33	5
3	ACURA	ILX	COMPACT	2.4		4 M6	Z	11.2	7.7	9.6	29	5
4	ACURA	ILX HYBRID	COMPACT	1.5		4 AV7	Z	6	5.8	5.9	48	5
5	ACURA	MDX 4WD	SUV - SMALL	3.5		6 AS6	Z	12.7	9.1	11.1	25	7
6	ACURA	RDX AWD	SUV - SMALL	3.5		6 AS6	Z	12.1	8.7	10.6	27	7
7	ACURA	RLX	MID-SIZE	3.5		6 AS6	Z	11.9	7.7	10	28	7
8	ACURA	TL	MID-SIZE	3.5		6 AS6	Z	11.8	8.1	10.1	28	7
9	ACURA	TL AWD	MID-SIZE	3.7		6 AS6	Z	12.8	9	11.1	25	7
10	ACURA	TL AWD	MID-SIZE	3.7		6 M6	Z	13.4	9.5	11.6	24	7
11	ACURA	TSX	COMPACT	2.4		4 AS5	Z	10.6	7.5	9.2	31	5
12	ACURA	TSX	COMPACT	2.4		4 M6	Z	11.2	8.1	9.8	29	5
13	ACURA	TSX	COMPACT	3.5		6 AS5	Z	12.1	8.3	10.4	27	7
14	ALFA ROMEO	4C	TWO-SEATER	1.8		4 AM6	Z	9.7	6.9	8.4	34	5
15	ASTON MARTIN	DB9	MINICOMPACT	5.9		12 A6	Z	18	12.6	15.6	18	13
16	ASTON MARTIN	RAPIDE	SUBCOMPACT	5.9		12 A6	Z	18	12.6	15.6	18	13
17	ASTON MARTIN	V8 VANTAGE	TWO-SEATER	4.7		8 AM7	Z	17.4	11.3	14.7	19	9
18	ASTON MARTIN	V8 VANTAGE	TWO-SEATER	4.7		8 M6	Z	18.1	12.2	15.4	18	9
19	ASTON MARTIN	V8 VANTAGE S	TWO-SEATER	4.7		8 AM7	Z	17.4	11.3	14.7	19	9
20	ASTON MARTIN	V8 VANTAGE S	TWO-SEATER	4.7		8 M6	Z	18.1	12.2	15.4	18	9
21	ASTON MARTIN	VANQUISH	MINICOMPACT	5.9		12 A6	Z	18	12.6	15.6	18	13
22	AUDI	A4	COMPACT	2		4 AV8	Z	9.9	7.4	8.8	32	5
23	AUDI	A4 QUATTRO	COMPACT	2		4 AS8	Z	11.5	8.1	10	28	230
24	AUDI	A4 QUATTRO	COMPACT	2		4 M6	Z	10.8	7.5	9.3	30	214
25	AUDI	A5 CABRIOLET	SUBCOMPACT	2		4 AS8	Z	11.5	8.1	10	28	230
26	AUDI	A5 QUATTRO	SUBCOMPACT	2		4 AS8	Z	11.5	8.1	10	28	230
27	AUDI	A5 QUATTRO	SUBCOMPACT	2		4 M6	Z	10.8	7.5	9.3	30	214
28	AUDI	A6 QUATTRO	MID-SIZE	2		4 AS8	Z	12	8.1	10.2	28	235
29	AUDI	A6 QUATTRO	MID-SIZE	3		6 AS8	Z	12.8	8.6	10.9	26	251
30	AUDI	A6 QUATTRO T	MID-SIZE	3		6 AS8	D	9.8	6.2	8.1	35	217
31	AUDI	A7 QUATTRO	MID-SIZE	3		6 AS8	Z	13.3	8.5	11.2	25	262
32	AUDI	A7 QUATTRO T	MID-SIZE	3		6 AS8	D	9.8	6.2	8.1	35	217
33	AUDI	A8	MID-SIZE	3		6 AS8	Z	13.1	8.8	11.2	25	258
34	AUDI	A8	MID-SIZE	4		8 AS8	Z	13.7	8.3	11.3	25	265
35	AUDI	A8 TDI (modified	MID-SIZE	3		6 AS8	D	9.8	6.5	8.4	34	224

CONCLUSÕES

Com a maior emissão do dióxido de carbono (CO₂) e outros gases do efeito estufa, a Terra vem sofrendo diversos problemas ambientais devido a esse desbalanceamento, tais como o aumento da temperatura média do planeta e a extinção da fauna e flora, o que vem preocupando não somente os ambientalistas, mas também a população e organizações mundiais. Iniciativas como a desse projeto são importantes para estudos futuros e conscientização, com a proposta de sequestro de carbono e reflorestamento de áreas devastadas, assim criando a possibilidade de amenizar os efeitos negativos que o planeta vem sofrendo e, ao mesmo tempo, criar a possibilidade de que população como um todo tenha mais consciência dos impactos que ela causa ao meio ambiente.

O projeto apresentou resultados interessantes, sendo uma oportunidade única de aprender sobre diversas áreas do conhecimento, visto que se trata de um projeto que aborda várias temáticas relacionadas ao meio ambiente e o estudo da produção de gases poluentes, viabilizando com dados o entendimento da origem das emissões e da necessidade de preservação do meio ambiente e a compensação de gases de efeito estufa.

BIBLIOGRAFIA

SILVA, Cleyton Martins da. **Emissões atmosféricas e mudanças climáticas**. Coautoria de Graciela Arbilla. Vozes, 2022. E-BOOK. (26 p.). ISBN 9786556751962. Acesso em: 24/07/2023.

BERNI, Mauro Donizeti. **Planejamento, energia e meio ambiente no transporte urbano**. 1998. 310p. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Campinas-SP. Disponível em: https://hdl.handle.net/20.500.12733/1591482. Acesso em: 23 iun. 2024.

AREVALO, Luis Alberto; ALEGRE, Julio Cesar; VILCAHUAMAN, Luciano Javier Montoya. Metodologia para Estimar o Estoque de Carbono em Diferentes Sistemas de Uso da Terra. Empresa Brasileira de Pesquisa Agropecuária Centro Nacional de Pesquisa de Florestas Ministério da Agricultura, Pecuária e Abastecimento, 2002. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/17083/1/doc73.pdf. Acesso em: 06 ago. 2024.

IBF. Instituto Brasileiro de Florestas. Árvores Brasileiras. 2020. Disponível em: https://www.ibflorestas.org.br/lista-de-especies-nativas. Acesso em: 06 ago. 2024.

BBC NEWS Brasil. <u>CO2</u>: os gráficos que mostram que mais da metade das emissões ocorreram nos últimos 30 anos - BBC News Brasil. 8 nov. 2021. Disponível em: https://www.bbc.com/portuguese/geral-59013520. Acesso em: 04 ago. 2024.

CARMO LIMA, Robson; DOFF SOTTA, Eleneide; BRUNO BRITO RAMOS, Mikael; MARQUES DA SILVA E SILVA, Breno; DA SILVA APARÍCIO, Perseu; KLAUS SANTOS DOS SANTOS, Yan. Equações para estimativa de volume, biomassa e carbono para três espécies nativas da Amazônia, cupiúba (Goupia glabra Aubl), angelim vermelho (Dinizia excelsa Ducke) e mandioqueira escamosa (Qualea paraenis Ducke). Arquivos científicos (IMMES), 2019. Disponível em: https://arqcientificosimmes.emnuvens.com.br/abi/article/download/199/84/. Acesso em: 06 ago. 2024.

DADOS MUNDIAIS. Emissões de metano e CO₂ por país. 2022. Disponível em: https://www.dadosmundiais.com/co2-por-pais.php . Acesso em: 04 ago. 2024.

EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Livros - Espécies Arbóreas Brasileiras. Disponível em: https://www.embrapa.br/florestas/publicacoes/especies-arboreas-brasileiras. Acesso em: 06 ago. 2024.

MCTI, Ministério da Ciência e Tecnologia e Inovação. Estimativas anuais de emissões de gases de efeito estufa no Brasil. 4. ed. Brasília, DF: [s.n.], 2017. 89 p., il. Disponível em: http://sirene.mcti.gov.br/documents/1686653/1706227/4ed_ESTIMATIVAS_ANUAIS_WEB.pdf/a4376a93-c80e-4d9f-9ad2-1033649f9f93 . Acesso em: 04 ago. 2024.

GE, Mengpin; FRIEDRICH, Johannes; VIGNA, Leandro. 4 gráficos explicam as emissões de gases de efeito estufa por países e setores. World Resources Institute, 2020. Disponível em: https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors. Acesso em: 01 ago. 2024.

USP-ESALQ. Escola Superior de Agricultura Luiz de Queiroz da Universidade de São Paulo - USP. LCF-510-Inventário Florestal. USP. Disponível em:

http://cmq.esalq.usp.br/wiki/lib/exe/fetch.php?media=publico:syllabvs:lcf510:p5_-_15_-_09_-_14.pdf. Acesso em: 06 ago. 2024.

IBF, Instituto Brasileiro de Florestas. 1,2 trilhão de árvores precisam ser plantadas para conter o aquecimento. **Instituto Brasileiro de Florestas,** 2020. Disponível em: https://www.ibflorestas.org.br/conteudo/arvores-plantadas . Acesso em: 04 ago. 2024.

PODDER, Debajyoti. **CO₂ Emission by Vehicle**. Disponível em: https://www.kaggle.com/datasets/debajyotipodder/co₂-emission-by-vehicles. Acesso em: 06 ago. 2024.

ROBORTELLA, Henrique Simionato. Equações de Biomassa e Estoques de Carbono de Seis Espécies Arbóreas em plantios mistos no noroeste do mato grosso. instituto nacional de pesquisas da Amazônia – INPA - Programa de pós-graduação em Ciências de Florestas Tropicais, 2010. Disponível em: https://repositorio.inpa.gov.br/bitstream/1/5103/1/Henrique_Robortella.pdf. Acesso em: 06 ago. 2024.