

ESPECTROSCOPIAS DE RMN DE ¹H, ¹³C E ¹⁹F E INFRAVERMELHO E CÁLCULOS TEÓRICOS APLICADOS AO ESTUDO DA FÍSICO-QUÍMICA DE HIDRAZINAS FLUORADAS

Palavras-Chave: hidrazinas, organofluorados, físico-química

Autores:

Caio Enrico de Vasconcellos Pinheiro Nascimento – IQ, UNICAMP Prof. Dr. Rodrigo Antonio Cormanich – IQ, UNICAMP

INTRODUÇÃO:

As hidrazinas foram descobertas em 1887 pelo químico alemão Theodor Curtius. O nome

hidrazina pode se referir tanto à molécula de fórmula N_2H_4 ou a moléculas orgânicas com um grupo funcional de hidrazina. Esse grupo molecular tem inúmeras aplicações; seja na síntese orgânica como agente redutor¹ ou nucleófilo – como na redução de Wolff-Kishner², –, isso além de suas aplicações na indústria farmacológica – como inibidores alcalinos, catalisadores, corantes e até comburentes⁴ – ou ainda como agentes desincrustantes e matéria-prima para derivados que atuam como fertilizantes, pesticidas e antioxidantes.

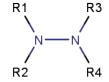


Figura 1-Grupo hidrazina

Neste trabalho será estudado uma junção de duas categorias interessantes de compostos orgânicos: as hidrazinas e os compostos organofluorados – que podem fornecer propriedades físico-químicas ímpares –. É de se esperar que a inserção de flúor no sistema mude as propriedades e torne semelhante às propriedades de compostos organofluorados⁵ e o átomo de flúor pode causar também uma diferença na preferência conformancional.⁶ Essas diferenças podem ocasionar mudanças na densidade eletrônica e na capacidade da molécula receber ou doar prótons em ligações de hidrogênio e interações hiperconjugativas, isso pode ocasionar em compostos com aplicações únicas em química medicinal, agroquímica e/ou novos materiais.^{7,8}

METODOLOGIA:

Para a parte teórica foram construídas superfícies de energia potencial para todas as moléculas estudadas e seus mínimos foram imediatamente otimizados utilizando da DFT ao nível teórico BHandHLYP D4 aug-cc-pvtz – determinado o melhor nível teórico quando comparado com DLPNO-

CCSD(T) para os níveis testados – para então achar os confôrmeros mais estáveis de cada molécula. Então foi feita uma otimização com inclusão do efeito IEFPCM para vários solventes – acetona, acetonitrila, cicloexano, clorofórmio, diclorometano e DMSO – e cálculo para obtenção de constantes de acomplamento em cada caso. Uma análise NBO também foi feita para se obter as contribuições hiperconjugativas, eletrostáticas e estéricas para a ordem de estabilidade relativa entre os confôrmeros dos compostos propostos. Por fim foram obtidas, por meio da QTAIM (Quantum Theory of Atoms In Molecules) e NCI (Non Covalent Interactions), as análises topológicas para caracterizar possíveis interações intramoleculares, com um enfoque em ligações de hidrogênio.

Para a parte experimental os compostos obtidas foram de origem comercial e os espectros de RMN de 1 H, 13 C e 19 F em diferentes solventes foram obtidos e as constantes de acoplamento J_{XX} (X=H, C e F) em solventes polares e apolares. Por fim foram obtidos os espectros de IV.

RESULTADOS E DISCUSSÃO:

As moléculas analisadas foram a 2-fluorofenilidrazina, 2-(trifluorometil)fenilidrazina e a 2,6-difluorofenilidrazina.

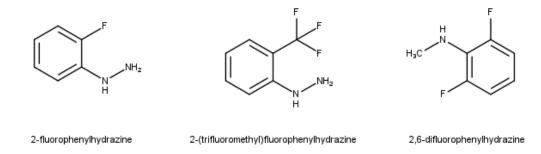


Figura 2-Fórmula estrutural dos compostos analisados

Para o 2-fluorofenilidrazina, quando calculado como um gás puro e ideal, o composto apresentou três confôrmeros principais, a visualização dos confôrmeros e a distribuição deles pode ser observada abaixo:

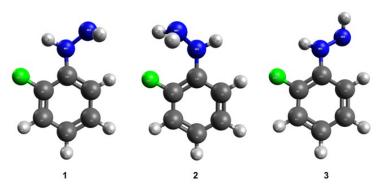


Figura 3-Confôrmeros da 2-fluorofenilidrazina gasosa pura

Confôrmero	SCF rel. (kcal/mol)		Gibbs rel. (kcal/mol)	População SCF (%)	População entalpia (%)	População Gibbs (%)
1	0,00	0,00	0,00	69,5	66,7	63,6
2	2,21	2,23	2,16	1,7	1,6	1,7
3	0,52	0,44	0,36	28,8	31,8	34,7

Tabela 1 – Distribuição de confôrmeros da 2-fluorofenilidrazina gasosa pura

Quando o cálculo é feito considerando o efeito dos solventes é possível perceber uma mudança já no número de confôrmeros; alguns deles possuem quatro confôrmeros em vez de três.

Mesmo com a maior quantidade de confôrmeros, os majoritários se assemelham aos confôrmeros na imagem acima; os confôrmeros com população SCF maior que 40% se assemelham ao 1, os confôrmeros com aproximadamente 15-30% de população SCF se assemelham ao 3 e os confôrmeros com aproximadamente 1,5-2,5% de população SCF se assemelham ao 2. Quando a população SCF do confôrmero for menor que 1% ele apresenta o –NH₂ para frente ou para trás do plano do anel, como na imagem abaixo.

Ou seja, a maior diferença entre os confôrmeros nos diferentes solventes não é espacial – ou, pelo menos, essa não é a diferença majoritária –, mas sim a diferença de energética que esses confôrmeros terão entre si e, portanto, suas populações nos solventes.

Uma análise NBO revela que o par isolado do nitrogênio N12 – o que está ligado ao carbono – tem uma forte interação com o orbital antiligante entre o carbono C2 e C11 – os que estão nas posições 6 e 5, respectivamente – e essa interação é significativamente mais forte nos confôrmeros mais estáveis – cerca de 20 kcal/mol mas forte. Portanto, é possível que esse efeito

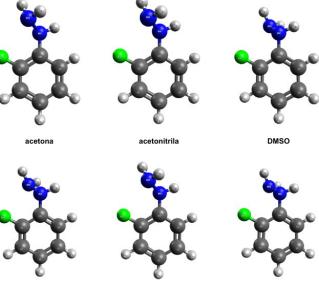


Figura 4-Confôrmeros com menos de 1% de população SCF para a 2fluorofenilidrazina em diferentes solventes

hiperconjugativo seja um dos fatores estabilizante dos confôrmeros.

No caso da 2,6-difluorofenilidrazna pura gasosa temos apenas dois confôrmeros com um deles sendo muito mais presente do que o outro:

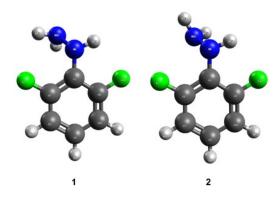


Figura 5-Confôrmeros majoritários da 2,6difluorofenilidrazina pura gasosa

Confôrmero	SCF rel. (kcal/mol)	Entalpia rel. (kcal/mol)	Gibbs rel. (kcal/mol)	População SCF (%)	População entalpia (%)	População Gibbs (%)
1	0,00	0,00	0,00	97,4	96,7	96,3
2	2,15	2,00	1,92	2,6	3,3	3,7

Tabela 2-Distribuição de confôrmeros da 2,6-difluorofenilidrazina gasosa pura

Um efeito muito semelhante ao da 2-fluorofenilidrazina acontece, os confôrmeros majoritários de cada solvente se assemelham ao 1. Para a 2-(trifluorometil)fenilidrazina também temos dois confôrmeros majoritários, mas eles estão mais bem destruídos:

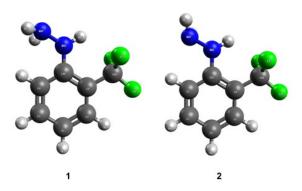


Figura 6-Confôrmeros da 2-(trifluorometil)fenilidrazina gasosa

Confôrmero	SCF rel. (kcal/mol)	Entalpia rel. (kcal/mol)		População SCF (%)	População entalpia (%)	População Gibbs (%)
1	0,00	0,00	0,00	56,3	54,3	50,3
2	0,15	0,10	0,01	43,7	45,7	49,7

A preferência do confôrmero 1 pode ser explicada pela topologia. É possível ver que há duas ligações além das ligações moleculares, sendo uma delas uma ligação de hidrogênio. Enquanto isso, o confôrmero 2 possui apenas uma interação – uma ligação de hidrogênio – e esse pode ser um dos fatores que causam a maior preferência ao confôrmero 1. Além disso, há ainda a análise de NBO que revela uma interação de 50,66 kcal/mol – neste caso específico – entre o

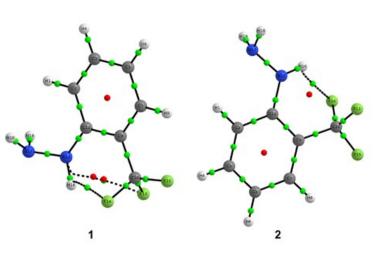


Figura 7-Gráfico topológico do confôrmero 1 e 2 da 2-(trifluorometil)fenilidrazina

N12 e o orbital antiligante da ligação entre C2 e C11, esse número é ligeiramente menor no confôrmero 2, com 44,87 kcal/mol de intensidade. Em outros solventes a distribuição segue o mesmo caminho dos outros compostos.

CONCLUSÕES:

Como pôde se ver anteriormente, se utilizou de muitas ferramentas para fazer uma análise completa das conformações em diferentes solventes. Uma análise completa infelizmente não cabe em um resumo, mas é possível ter-se uma noção do processo utilizado e de parte dos resultados obtidos. A química computacional é essencial para entender melhor o mundo real, seu funcionamento e seus mecanismos.

BIBLIOGRAFIA

- **1.** World Health Organization. Some Industrial Chemicals. In *IARC Monographs on the Evaluation of Carcinogenic Risks to Humans*; 2018; Vol. 115, p 191–239.
- 2. Kishner, N.J. Russ. Phys. Chem. Soc., 43, 582 (1911).
- 3. Wolff, L. Ann., 1912, 394, 86.
- **4.** Oliveira, V. G.; De Oliveira, P. H. R.; Tolentino, N. M. C. Hydrazine (CAS 302-01-2). *Rev. Virtual Quim.* **2015**, 7 (4), 1570–1578. https://doi.org/10.5935/1984-6835.20150086.
- **5.** Harsanyi, A.; Graham, S. Organofluorine Chemistry: Applications, sources and sustainability. *Dep. Chem. Durham Univ. South Road, Durham, DH1 3LE, U.K.* **2007**, 12 (3), 810–812.
- **6.** Sandford, G. Organofluorine chemistry. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* **2000**, 358 (1766), 455–471. https://doi.org/10.1098/rsta.2000.0541.
- **7.** Müller K, Faeh C, Diederich F. Fluorine in pharmaceuticals: looking beyond intuition. *Science*. 2007;317(5846):1881-1886. doi:10.1126/science.1131943
- **8.** Harper, D. B.; O'Hagan, O. The fluorinated natural products. *Nat. Prod. Rep.* **1994**, 11, 123–133. https://doi.org/10.1039/np9941100123.