

Estudo computacional da estabilidade da estrutura secundária de peptídeos em misturas de solventes

Palavras-Chave: PERTURBAÇÃO DA ENERGIA LIVRE, SOLVATAÇÃO DE PROTEÍNAS, DINÂMICA MOLECULAR

Autores:

LUCAS VERONA DE ARAUJO, IQ – UNICAMP Prof. Dr. LEANDRO MARTÍNEZ (orientador), IQ – UNICAMP

INTRODUÇÃO

O enovelamento de proteínas está intimamente ligado às condições do meio em que se encontram. Moléculas orgânicas, conhecidas como cossolventes, podem modular a estabilidade de suas estruturas [1]. Neste projeto, desenvolveu-se uma metodologia de cálculo capaz de reponderar resultados estruturais e de solvatação da proteína, baseando-se na Teoria de Perturbação da Energia Livre (FEP) [2]. Com isso, foi possível entender como a estabilidade da estrutura secundária de um peptídeo é afetada por interações intermoleculares, por meio da perturbação delas, sem a necessidade de realizar novas simulações.

Como forma de aplicar a metodologia, utilizaram-se simulações de dinâmica molecular de soluções aquosas de um peptídeo na presença de trifluoroetanol em diferentes concentrações. Os resultados mostram como as funções de distribuição de distâncias mínimas (MDDFs) [3], os parâmetros de solvatação preferencial do cossolvente ($\Gamma_{TFE-ÅGUA}$), e a porcentagem estrutural média de estrutura secundária variam em função da intensidade da modificação aplicada nas interações intermoleculares estudadas.

METODOLOGIA

Simulações de dinâmica molecular

No projeto, foram usadas simulações por dinâmica 'molecular com amostragem ampliada por troca de réplicas de Hamiltoniano (H-REMD). O modelo de peptídeo empregado foi o AAQAA₃, cuja estrutura nativa era a α -hélice [4]. Os sistemas eram compostos por soluções aquosas contendo fragmento de proteína e trifluoroetanol em quatro concentrações: 20%, 40%, 50% e 60% (v/v); com temperatura de 300 K em uma caixa cúbica de 56 Å, salvando-se 1001 frames. A figura 1 mostra o sistema a 20%:

Metodologia de cálculo e interações perturbadas

Para se entender como as interações intermoleculares afetam a estrutura proteica, calculou-se o novo peso estatístico de cada frame "i" (P_i) em uma simulação com "N" frames a partir da equação 1, baseada na equação de FEP [2]

$$P_{i} = \frac{e^{-\beta \cdot \Delta U_{i}}}{\sum\limits_{k=1}^{N} e^{-\beta \cdot \Delta U_{k}}}, \quad (1)$$

onde ΔU_i é a diferença de energia potencial entre o frame "i" com e sem a perturbação aplicada e β é o produto $k \cdot T$, onde k é a constante de Boltzmann e T e temperatura. Essa diferença é computada pela soma das energias resultantes da aplicação da perturbação sobre cada interação, do mesmo tipo, presentes no frame "i". A perturbação, por sua vez, é uma função que depende da distância entre os átomos envolvidos nas interações. Então, Com os novos pesos de cada frame da simulação, é possível obter o novo valor de uma propriedade média \overline{X} qualquer pela equação

$$\overline{X} = \sum_{i=1}^{N} x_i \cdot P_i, \quad (2)$$

em que x_i é o valor dessa propriedade no frame "i". Para o projeto, foi utilizada como perturbação a equação que pode ser vista na figura 2A, abaixo.

Figura 2: A) Função de perturbação com diferentes valores de "δ" com r_{corte} = 10Å. B) e C) Ligação de hidrogênio entre o TFE e o oxigênio carbonílico da cadeia principal do peptídeo e interação entre os átomos de flúor do TFE com a cadeia lateral hidrofóbica (grupos -CH₃) dos resíduos de alanina, respectivamente. Fonte: autoral.

Essa equação foi utilizada pois há um decaimento de sua intensidade conforme "r" aumenta até atingir o corte (r_{corte}), onde vale zero.

Já as interações intermoleculares perturbadas foram as ligações de hidrogênio entre o hidrogênio da hidroxila do TFE e o oxigênio da carbonila da cadeia principal proteica (H_{TFE} - $O_{C=O}$), vista na figura 2B, e as interações hidrofóbicas entre os átomos de flúor do álcool com os grupos metila (-CH₃) que compõe as cadeias laterais dos resíduos de alanina (F_{TFE} - Me_{ALA}), na figura 3C. Essas duas interações foram escolhidas por serem reportadas na literatura como contribuidoras para o fenômeno estabilizante do trifluoroetanol [5].

Análise dos resultados

Os raios de cortes selecionados para as interações H_{TFE} - $O_{C=0}$ e F_{TFE} - Me_{ALA} foram de 2,0 e 3,8 Å, respectivamente. Esses valores correspondem aos vales da primeira camada de solvatação, onde a ligação de hidrogênio comentada está presente e da segunda, onde se encontram majoritariamente as interações hidrofóbicas, de acordo com as MDDFs apresentadas na figura 3A. As MDDFs consistem na distribuição de distâncias mínimas entre qualquer átomo da proteína e do solvente ou cossolvente.

Com essas distribuições, é possível calcular a densidade de distâncias mínimas peptídeo-cossolvente como função da distância "r" ($g_{pc}^{md}(r)$) e obter o perfil solvatação do peptídeo

pelo TFE; determinando não só o número de camadas de solvatação formadas, como também a que distância elas ocorrem e a sua intensidade. A partir da decomposição da curva total, pode-se observar quais átomos do cossolvente estão envolvidos nas interações que dão origens aos picos. Usou-se, então, essa decomposição para obter r_{carte} de cada interação estudada (Figura 3D).

Figura 3: A) MDDFs TFE-peptídeo em diferentes concentrações; as linhas tracejadas representam r_{corte} para cada

interação. B) e C) Recortes dos picos referentes às ligações de hidrogênio formadas e às interações inespecíficas do TFE com o peptídeo, respectivamente. D) Decomposição da função de distribuição de distâncias mínimas para o sistema a 20% nas contribuições dos átomos de hidrogênio e flúor do cossolvente. O comportamento é o mesmo para os demais sistemas. Fonte: autoral.

O parâmetro de solvatação preferencial do cossolvente ($\Gamma_{TFE-ÅGUA}$) indica se na região em que há interações proteína-vizinhança, conhecida como domínio proteico [3], o soluto possui interações preferenciais com a água ($\Gamma_{TFE-ÅGUA} < 0$) ou com o TFE ($\Gamma_{TFE-ÅGUA} > 0$) [3,6]. Esse parâmetro pode ser obtido pela equação

$$\Gamma_{TFE-\acute{A}GUA} \approx \rho_{TFE} \cdot [G_{TFE}(r_{bulk}) - G_{\acute{A}GUA}(r_{bulk})], \quad (3)$$

onde ρ_{TFE} é a concentração molar de trifluoroetanol na solução e $G_u(r_{bulk})$ é o valor da integral de Kirkwood-Buff da espécie "u", na distância mínima a partir da qual não há mais interações da proteína com o restante do sistema ($r_{bulk} = 15$ Å) [3,6,7]. As MDDFs e integrais (usadas na computação de

 $\Gamma_{\text{TFE-AGUA}}$) foram obtidas usando o pacote ComplexMixtures.jl [8], desenvolvido pelo grupo.

Outra propriedade calculada foi a porcentagem de α-hélice com o algoritmo DSSP usando o pacote MolSimToolkit.jl [9]. Com esse resultado, é possível avaliar a estabilização da proteína quando as interações intermoleculares selecionadas sofrem uma perturbação.

Com isso, calculou-se a variação relativa da altura do pico nas MDDFs correspondentes a cada interação intermolecular mencionada, do parâmetro de solvatação e do conteúdo de hélice em cada sistema, utilizando 25 valores de " δ " da equação na figura 2A em um intervalo de $-1 \cdot 10^{-3}$ a $1 \cdot 10^{-3}$. O cálculo dessas propriedades relativas se deu pela equação

$$\frac{\Delta A}{A_{\delta=0}} = \frac{A_{\delta=x} - A_{\delta=0}}{A_{\delta=0}}, \quad (4)$$

onde $A_{\delta=x}$ é o valor da propriedade "A" para um valor "x" qualquer de " δ " e $A_{\delta=0}$ é o valor quando não há perturbação.

RESULTADOS E DISCUSSÃO

De início, como forma de analisar a solvatação preferencial do peptídeo e o efeito estabilizador do trifluoroetanol, calculou-se $\Gamma_{TFE-\dot{A}GUA}$ e o conteúdo de estrutura nativa do peptídeo para as simulações sem modificações, cujos resultados estão apresentados na tabela 1:

concentração (% v/v)	Água pura	20	40	50	60	80
Γ _{tfe-água}	-	2,780	6,325	6,262	3,800	2,880
% de hélice	5,21	10,68	16,22	15,54	19,54	12,81

Tabela 1: $\Gamma_{\text{TFE-ÁGUA}}$ e o conteúdo de estrutura nativa das simulações sem perturbações. Fonte: autoral.

Já os resultados das propriedades relativas estão compilados na figura 4:

Figura 4: Variações relativas da altura dos picos nas MDDFs (A e D), do parâmetro de solvatação preferencial (B e E) e do conteúdo de α-hélice (C e F) em função do valor "δ" da perturbação. As linhas cheias representam os resultados da aplicação da perturbação sobre as interações H_{TFE}-O_{C=0}. Já as tracejadas são resultantes da aplicação da perturbação sobre as interações F_{TFE}-Me_{ALA}. A figura A) se refere à altura relativa do pico da primeira camada de solvatação e B), da segunda, cujas distâncias mínimas associadas (*r*_{*nico}) estão em destaque nas imagens*. Fonte: autoral.</sub>

Diante dos resultados, verifica-se que as retas decrescentes das figuras 4A e 4D indicam que ao enfraquecer, respectivamente, as interações H_{TFE} - $O_{C=O}$ e F_{TFE} - Me_{ALA} , a formação de cada uma é desfavorecida, causando uma diminuição nas suas densidade de distâncias mínimas. Essa diminuição de densidades se reflete na diminuição da altura dos picos correspondentes.

Para a ligação de hidrogênio H_{TFE} - $O_{C=0}$, apesar da discordância da simulação de 40% (v/v), observa-se que a proteína passa a ser cada vez mais preferencialmente solvata pelo álcool nos demais sistemas, juntamente com uma estabilização progressiva de sua estrutura, devido ao comportamento crescente das retas em 4B e 4C.

Já no caso das interações hidrofóbicas F_{TFE} -Me_{ALA}, com o seu enfraquecimento, a proteína passa cada vez mais preferencialmente hidratada acompanhada de uma diminuição de seu conteúdo de estrutura secundária, exceto na simulação de 80% (v/v), como visto em 4E e 4F.

Essa combinação de resultados, por sua vez, mostra que a ligação de hidrogênio citada, que se acredita ser um fator estabilizante, é uma interação que leva à desnaturação da hélice, como já reportado em um trabalho recente do grupo [9]. Além disso, a combinação corrobora, também, com a

hipótese de que interações entre os átomos de flúor do trifluoroetanol e cadeias laterais apolares expostas de proteínas favorecem o enovelamento estrutural [5].

Quando há o enfraquecimento progressivo das ligações de hidrogênio H_{TFE} - $O_{C=O}$, o número dessas interações diminui e o cossolvente prefere cada vez mais interagir com o peptídeo por meio de interações inespecíficas, que incluem interações hidrofóbicas com os átomos de flúor. Como as interações F_{TFE} - Me_{ALA} são estabilizantes, o álcool é mais preferencialmente acumulado no domínio proteico, e têm-se o aumento do conteúdo de α -hélice do peptídeo. Em contrapartida, quando se enfraquece as interações F_{TFE} - Me_{ALA} , o número dessas interações diminui e as ligações de hidrogênio H_{TFE} - $O_{C=O}$ proteína são preferidas cada vez mais pelo cossolvente, levando à desnaturação estrutural que é acompanhada pela exclusão preferencial do trifluoroetanol do domínio.

CONCLUSÃO E PERSPECTIVAS

Neste projeto, foi possível desenvolver e aplicar uma metodologia de cálculo que utiliza a reponderação estatística dos frames da simulação original. Os resultados obtidos corroboram com a hipótese do papel estabilizante das interações entre os átomos de flúor do cossolvente e as cadeias laterais hidrofóbicas de proteínas [5]. Além disso, foi observado o papel desestabilizante que a ligação de hidrogênio entre TFE e oxigênio da carbonila da cadeia principal proteica [6] tem sobre estruturas secundárias. O método desenvolvido neste trabalho foi implementado no pacote MolSimToolkit.jl (https://m3g.github.io/MolSimToolkit.jl/dev/Reweighting/), de forma pública e gratuita. Essa nova implementação pode ser utilizada para estudar quaisquer interações intermoleculares presentes em diversos sistemas moleculares, sem a necessidade de serem feitas novas simulações, oferecendo uma grande economia de recursos computacionais e de tempo.

BIBLIOGRAFIA

- 1. Canchi DR, García AE. Cosolvent effects on protein stability. Annu Rev Phys Chem. 2013; 64, 273–293.
- 2. Jorgensen WL, Thomas LL. Perspective on Free-Energy Perturbation Calculations for Chemical Equilibria. J. Chem. Theory Comput. 2009; 4, 6, 869–876
- Martínez L, Shimizu S. Molecular Interpretation of Preferential Interactions in Protein Solvation: A Solvent-Shell Perspective by Means of Minimum-Distance Distribution Functions. J. Chem. Theory Comput. 2017; 13, 12, 6358–6372.
- 4. Shalongo W, Dugad L, Stellwagen E. Distribution of Helicity within the Model Peptide Acetyl(AAQAA)3 amide. J. Am. Chem. Soc. 1994, 116, 18, 8288–8293.
- 5. M. Vincenzi, F.A. Mercurio, M. Leone. About TFE: Old and New Findings, Curr. Protein Pept. Sci. 2019; 20, 5, 425–451.
- 6. Trifluoroethanol direct interactions with protein backbones destabilize α -helices. J Mol Liq. 2022; 365, 120209.
- 4. Kirkwood JG, Buff FP. The Statistical Mechanical Theory of Solutions. I. J. Chem. Phys. 1951; 19, 774–777.
- 8. Martínez L. ComplexMixtures.jl: Investigating the structure of solutions of complex-shaped molecules from a solvent-shell perspective. J Mol Liq. 2022; 347, 117945.
- 9. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983; 22, 2577–2637.