

Verificação e Validação dos modelos numérico e reduzido de mancais de elementos rolantes (esferas e rolos).

Palavras-Chave: Mancal de elementos rolantes, Verificação e validação, Modelo computacional.

Ana Luiza Borim Lima, FEM - UNICAMP Dra. Laís Carrer (colaboradora), FEM - UNICAMP Profa. Dra. Kátia Lucchesi Cavalca (orientadora), FEM – UNICAMP

INTRODUÇÃO:

Os mancais de elementos rolantes possuem um vasto campo de aplicação. Atualmente estão cada vez mais presentes no cenário industrial pata aplicações em equipamentos mecânicos variados como matriz energética e setor automotivo, por exemplo. Dada essa ascensão, faz-se necessário um estudo detalhado dos modelos disponíveis, a fim de mapear suas falhas e a sua vida útil, entre outras informações importantes envolvendo seu desempenho e confiabilidade.

Na era da tecnologia, a implementação de softwares computacionais é imprescindível para um projeto mais eficiente, otimizado e que complementam a necessidade de testes físicos. Mas, para garantir que o software desenvolvido esteja de fato gerando resultados condizentes com a realidade, faz-se necessário realizar métodos que verifiquem sua veracidade.

A fim de atender essas demandas, o presente projeto visa a implementação do procedimento de Verificação e Validação, de acordo com as normas da ASME, para mancais de elementos rolantes que avalia a verossimilidade do modelo computacional desenvolvido em relação ao comportamento desse componente na aplicação real.

Os procedimentos de V&V segundo a ASME V&V 10 serão aplicados no ROTORTEST que engloba os modelos computacionais e reduzidos de contato, desenvolvidos no LAMAR (Laboratório de Máquinas Rotativas), e aprimorados para mancais de esferas por RADAELLI (2013) e BIZARRE (2015), e de rolos por TSUHA (2019), utilizando a expressão de força reduzida desenvolvida por NONATO (2009 e 2013).

METODOLOGIA:

O procedimento do V&V se subdivide em algumas etapas. Primeiramente tem-se a verificação que se subdivide em duas, a verificação do modelo, que consiste em analisar os modelos teóricos analíticos e comparar com as saídas fornecidas pelo código, conferindo assim se o modelo computacional está de acordo com a teoria já conhecida, e a verificação do cálculo que visa estimar a precisão do cálculo numérico dentro do modelo computacional utilizando os dados do refinamento de malha. A segunda etapa do V&V consiste na validação do modelo em relação ao modelo real experimental. Analisando se nosso modelo está convergindo valores coerentes com a realidade. Por fim, se ambas as etapas de análise obtiverem valores coerentes entre si, o modelo está verificado e validado.

Esse procedimento está ilustrado no fluxograma abaixo:

Figura 1: Fluxograma do procedimento do V&V

O procedimento da verificação de modelo inicia-se com o desenvolvimento dos modelos analíticos teóricos desde o mais simples até o mais complexo, passo a passo, para garantir uma abrangência maior do programa.

Nesse trabalho foram utilizados diversos modelos de mancais de elementos rolantes entre eles: o modelo de Hertz para um rolamento em equilíbrio estático e contato seco (HARRIS, 1991) e esse mesmo modelo, agora sujeito a uma rotação em sua pista interna. Também os modelos sob lubrificação elastohidrodinâmica (EHD) para elementos cilíndricos, descrito pelas equações 1 e 2 de Dowson e Higginson (SOARES, 2022 e MARIAN, 2020) e para elementos esféricos descrito pelas equações 3-7 propostas por Moes (WIJNANT, 2003).

Para lubrificação EHD para elementos cilíndricos:

$$H_{min} = 2.65 * U^{0.7} * G^{0.54} * W^{-0.13}$$
(1)
$$h_{min} = H_{min} Rx$$
(2)

sendo H_{min} a espessura de filme de óleo adimensional e U, G e W grupos adimensionais de velocidade, lubrificante e carga respectivamente, e h_{min} a espessura de filme em parâmetros dimensionais. Essa relação leva em conta que o mancal está em rotação e nos fornece o valor adimensional da espessura mínima do lubrificante.

E por fim para lubrificação EHD para elementos esféricos com contato elíptico, Moes propõe 2 parâmetros adimensionais, *M* como parâmetro de carga e *L* como parâmetro de lubrificante e utiliza ainda uma correção para a distribuição de carga, *M*, nos contatos elípticos, *N*.

$$H_{min}(N,L) = 1 - p(L) \cdot N^{q(L)}$$
 (3)

$$p(L) = \left((4 - 0.2 \cdot L)^7 + (3.5 + 0.1 \cdot L)^7 \right)^{\frac{1}{7}}$$
⁽⁴⁾

$$q(L) = -(0.6 + 0.6 \cdot (L+3)^{-0.5}$$
⁽⁵⁾

sendo p(L) a função que representa a proporcionalidade em função de L e q(L) é a função do expoente em função de L.

$$h_{min} = H_{min} \cdot c \tag{6}$$

$$c = \left(\frac{a^2}{2 \cdot R}\right) \cdot \left(\frac{k}{\varepsilon}\right) \tag{7}$$

Terminada a etapa de estudo de modelos teóricos se inicia a próxima parte da verificação que consiste em simular no modelo computacional o mesmo mancal utilizado nos cálculos analíticos e obter assim a SRQ (quantidade de resposta do sistema) de interesse para realizar a verificação. Nesse caso foi escolhido como objeto de análise o deslocamento dos elementos rolantes que no contato seco é o próprio δ e no contato com EHD é quantificado por meio do deslocamento do filme de óleo e sua espessura h_{min} .

O modelo computacional a ser validado, o ROTORTEST, fornece dados das espessuras de filme calculadas durante as iterações até o programa convergir. É possível determinar os tamanhos de malha desejados, bem como a quantidade de níveis que serão utilizados.

Nesse caso configurou-se o programa para trabalhar com 3 tamanhos de malhas em 3 níveis do método de multiníveis, nível 3, 4 e 5 (NONATO 2009) e em cada nível tem-se uma ampla gama de valores de espessura de filme adimensional calculados pelo programa durante as iterações. Para a verificação, utilizou-se a malha mais refinada, nível 5, para análise de convergência, por ser mais precisa.

Nesse ponto da verificação, para analisar a convergência, realiza-se o cálculo do erro absoluto entre a SRQ_{an} e a SRQ_{nu} , como tem-se diversos valores da iteração forma-se um vetor com esses dados e é construído um gráfico em escala logarítmica de erro por número de elementos (figura 3), possibilitando assim analisar a inclinação da curva, p_{ob} , que fornece a informação sobre a convergência da malha.

Para a segunda verificação o objetivo é a precisão do cálculo numérico dentro do código e, para isso, compara-se os resultados das malhas desenvolvidas pelo programa buscando a ordem de convergência das mesmas e, assim, encontrar a SRQ exata, *SRQ*_{es}.

Como tem-se 3 tamanhos de malhas, consequentemente existem 3 valores de SRQ_{nu}

calculados pelo programa. Como a malha é reduzida à uma taxa constante foi utilizado o seguinte cálculo (PORTO 2023) para estimar a ordem de convergência:

$$p^{th} = \ln\left(\frac{SRQ_{nu}(h_{MA3}) - SRQ_{nu}(h_{MA})}{SRQ_{nu}(h_{MA4}) - SRQ_{nu}(h_{MA5})}\right)$$
(8)
/ln(r)

Com a ordem estimada é possível encontrar a SRQ exata e com ela o erro absoluto, ε_a , e o relativo, ε_r , entre a SRQ exata e a numérica da malha mais refinada e por fim o índice de convergência da malha, GCI.

$$SRQ_{es} == SRQ_{nu}(h_{MA5}) + \frac{SRQ_{nu}(h_{MA5}) - SRQ_{nu}(h_{MA4})}{((h_{MA4})/(h_{MA5}))^{p^{th}}}$$
(9)

$$\varepsilon_a = SRQ_{es} - SRQ_{nu}(h_{MA5}) \tag{10}$$

$$\varepsilon_r = \left| \frac{SRQ_{es} - SRQ_{nu}(h_{MA5})}{SRQ_{nu}(h_{MA5})} \right|$$
(11)

$$GCI = Fs \cdot \varepsilon_r \tag{12}$$

sendo h_{MAi} o tamanho da malha com i = 3:5, uma vez que que se trabalhou com 3 níveis.

Com esses cálculos finaliza-se a parte da verificação e passamos para a validação.

A etapa da validação apresenta duas abordagens distintas, a primeira com um conjunto de dados experimentais, na qual estimamos as incertezas dos dados numéricos e experimentais e apresenta uma curva característica das distribuições de probabilidade em distribuições gaussianas. A segunda abordagem lida com múltiplos conjuntos de dados, utilizando métodos para a criação da distribuição para o modelo numérico. Ambas as etapas visam validar o modelo, não sendo necessário realizar as duas para o sucesso do procedimento.

A curva característica da distribuição nos fornece a função de densidade acumulada (CDF)

caso integrada, que nada mais é que a área sob a curva. Com esses dados é possível calcular a métrica da área entre a curva numérica e a experimental que é dada pela diferença entre as curvas:

$$M^{SRQ} = \frac{1}{|SRQ^{exp}|} \int_{-\infty}^{\infty} |CDF_{exp}(SRQ) - CDF_{num}(SRQ)| dSRQ$$
(13)

Caso a métrica *M*^{SRQ} seja menor ou igual a 10%, então o modelo está verificado e validado.

RESULTADOS PRELIMINARES:

Para a etapa da verificação, foram utilizados dados e características do mancal 6005 da SKF. Nesse modelo o mancal é composto por 10 esferas, das quais 5 são carregadas pois sofrem ação de uma carga vertical aplicada de 1500 N:

Figura 2: ilustração das esferas carregadas do mancal.

Seguindo as equações de 3 a 7, o cálculo analítico resultou nos seguintes valores da espessura de filme na pista interna:

Pista	H_{min} (adimensional)	<i>h_{min}</i> (10^-5
		m)
Interna	0.9383	0.3245

Tabela 1: dados cálculo analítico da espessura de filme na esfera mais carregada do mancal lubrificado e em rotação.

A partir do programa, os dados fornecidos foram da espessura de filme adimensional para os 3 tamanhos de malha.

Nível da malha	H_{min} (adimensional)
Nível 3	0.986725897752892
Nível 4	0.981081090445708
Nível 5	0.975987818493377

Tabela 2: dados cálculo das SRQs numéricas de cada tamanho de malha.

O programa também forneceu todos os valores das iterações até atingir o valor final e, a partir deles, foi possível calcular o erro entre esses valores numéricos e o valor analítico (tabela 1) adimensionais e traçar a curva que nos mostra a convergência da malha mais refinada como pode ser visto na figura 3.

Figura 3: Curva de erro absoluto ($SRQ_{an} - SRQ_{nu}$) pelo número de iterações realizadas

E calculando p_{ob} chegamos no valor de 0.049 para a convergência da malha mais refinada.

Seguindo para a última parte da verificação, utilizando as equações de 8 a 12 e os dados da tabela 2 chegou-se nos seguintes valores:

p_{th}	0.14833
SRQ _{es}	0.9290
ε_a	-0.0470
Er	0.0482
GCI	0.0602

Tabela 3: dados cálculo dos dados para verificação do
cálculo.

ou seja, a faixa de valores de *SRQ*, onde a *SRQ* exata está localizada é:

 $SRQ_{nu}(h_{MA5}) \pm (SRQ_{nu}(h_{MA5}) \cdot GCI)$ 0.9759878 ± 0.05875

Com esses cálculos chegou-se à uma faixa de valores com 6% de possibilidade de variação e um erro relativo de aproximadamente 4,7%, assim, podese afirmar que o código está verificado.

Para a etapa da validação, os dados utilizados para os cálculos são os do mancal de rolo NJ 202 e a incerteza a ser estimada dos dados experimentais são da folga diametral (pd) do mancal, que pode variar por diversos fatores como ajuste, montagem e é um parâmetro imprevisível.

Os dados experimentais utilizados para desenvolvimento das curvas de distribuição de dados são dos experimentos realizados no LAMAR por TSUHA (2019) para sua tese de doutorado.

Devido à alta demanda computacional que os testes requerem, seus resultados ainda estão sendo simulados e suas curvas desenvolvidas. Portanto os resultados dessa etapa do procedimento do V&V serão apresentados no relatório final com maiores detalhes.

BIBLIOGRAFIA

BIZARRE, Leticia. **Modelagem de forças de contato não lineares em mancais de elementos rolantes de contato angular**. 2015. 73 f. Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica,

HARRIS, Tedric A.; CRECELIUS, W. J. Rolling bearing analysis. 1991.

MARIAN, Max et al. Non-dimensional groups, film thickness equations and correction factors for elastohydrodynamic lubrication: A review. **Lubricants**, v. 8, n. 10, p. 95, 2020.

NONATO, Fábio. Modelo dinâmico para o contato em mancais de elementos rolantes sujeito a **Iubrificação elastohidrodinamica**. 2009. 113p. Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Campinas, SP.

NONATO, Fábio. **Modelo dinâmico para mancais** de elementos rolantes radiais de esferas considerando os efeitos da lubrificação elastohidrodinâmica. 2013. 117 p. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Campinas, SP.

PORTO, Edgard Haenisch. **Técnicas e** procedimentos para verificação e validação de código numérico de análise de rotores. 2023. 1 recurso online (157 p.) Dissertação (mestrado) -Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Campinas, SP.

RADAELLI, Gustavo Zarpelon; LUCCHESI, Katia. **Determinação do Carregamento Dinâmico em Mancais de Esfera de Contato Angular**. 2013. Dissertação (Mestrado em Engenharia Mecânica) -Universidade Estadual de Campinas, Campinas.

SOARES, Aline de Almeida. Estudo da vida útil ajustada para mancais de rolamento de rolo cilíndrico. 2022. 1 recurso online (99 p.) Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Campinas, SP

TSUHA, Natália Akemi Hoshikawa. **Modelo de força de contato de linha sob lubrificação elastohidrodinâmica aplicada a mancais de rolamentos radiais de rolo**. 2019. 1 recurso online (143 p.) Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Campinas, SP.

WIJNANT, Ysbrand Hans et al. **Contact dynamics in the field of elastohydrodynamic lubrication**. Enschede, the Netherlands: Universiteit Twente, 2003.