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1 Context Setting

Consider a market consisting of a riskless asset Sy with

ds = S d
riskless asset o) = pOS(®) dt (1
Sp(0)=1
and a risky asset S; satisfying
) dS1(6) =u®S1(@) dt+o@®)S1(t) dW()
risky asset 2)
S1(0) >0

where p(t), u(t), and o (t) # 0 are F-adapted processes satisfying the following condition

T
EU (p@|+ [u®|+0%®) dt | < oo
0

Let 6 (t) and 6, (t) denote the number of units of Sy (t) and S; (t), respectively. Then the value
of the portfolio 6 = (6, 67) is VP = 6,Sg + 61S1.

We also suppose that the portfolio is self-financing, i.e.,

dv? () = 6, (O dSo () + 67 (DdS1 (D) 3)

Substituting
VO () - 01081 ()
So(0)
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1 CONTEXT SETTING

into (3) and using (1) we have

av? = p OV (©) - 6, (OS1(O)dt + 61 (©)dS; 4)

Replacing (2),
dv? = [p @OV (© + (w® - p ()61 (OS1 (D]t + o (1) 0 (DS (AW (D) (5)

Our goal is to find a replicating (hedging) portfolio
V(M) =F, P-as. (6)

where F is Z;-measurable. For an European call, for example, F = max{S; -K,0} = (S; -K)*.

How much do we need to invest at time t = 0 and which portfolio 6 (t) should we use? Are v
and 6 unique?

We consider (V9 (t), 61 (t)) an F-adapted process. The equations (4) and (6) form a backward
stochastic differential equation (BSDE). To find an explicit solution, we can change the measure
and apply Clark-Ocone.

Define
u() -p (@)

o (t)

Using the change of measure as in the last section, we can write

u(t) = (7)

dv? = [p OV (©) + (u(®) - p ()01 (OS1 (O]t + o (1) 81 ()S1 (HAW (D)
—o ()01 (O)S1(MD L) (u(D) - p(O)dt (8)
= pOVP (Ddt+ 0 (D)6 (S (OAW (D)

Let .
U0 () = ¢ JoP® dsyb

Then using (8),
du? @) = e JoP® 516, (08, (O dW©®

or, equivalently,

t T t
¢ JoP® dsyb 1y = vO (0 + J o Jor® 4 5(6)01(OS1(®) dW(D) ©)
0

Let us recall the following result.

Theorem 1.1 (Clark-Ocone for 12 (P) Under Change of Measure). Suppose that F € 1.2 (P) is
Zr-measurable, and that the following conditions are met

1. Eo[|F|] < oo;

2. Eq[ [, IDF|? dt] < oo;

3. EQ[|F| fOT (f(;TDtu(s) dW(s) +f(;ru(s)Dtu(s) ds)z dt] < 00,



Then

T T
F:EQ[F]+J EQ{(DtF—FJ Deu(s) dW(s))
0 t

where VV(t) is a Brownian motion under the measure Q and D;F € ¢* is the Hida-Malliavin
derivative.

%} dW ()

Proof. Analogous to the case for D; 5. See, e.g. [Okul0]. O
Applying the generalized Clark-Ocone formula to
S

we have

T T
G=Eg[G] +f Eq [(DtG-GJ Dyu(s) dW(s)) ‘ %} dW() (10)
0 t

Comparing (9) with (10), we have v (0) = Eg[G] by uniqueness, and the replicating portfolio
is given by

. T
6,(1) = ¢ JoP® S5l 571 (E, [(DtG_GJ Pt dW(s)) ‘ %] Y
t

In particular, if p and u are constants, and o (t) = o # 0, then
o
is also constant, whence D;u = 0. Then the equation (11) simplifies to

01(t) =P Do 151 (OEGIDF | #,] (12)

In this presentation, we consider a digital option, which has a payoff at maturity
F = 1[g 00) (W(T))

where K is the exercise price. We aim to compute the conditional expectation Eg[DF | Z;].

2 Necessary Results

To do that, we need the following concept.

Definition 2.1 (Donsker delta function). Let Y: 2 — R, Y € ¥*. The continuous function
5y() R — (g*
is the Donsker delta function of Y if it has the property that

ff(y)5y(y) dy=f() as.
R

for all measurable f : R — R such that the integral converges.



2 NECESSARY RESULTS

Theorem 2.1. Suppose that

1. a:[0,T]— R" is a deterministic function such that ||a||* = f(;r a2(s) ds < oo.
2. ¢ :[0,T] — R is a deterministic function such that ||p||? = Z?le f(;r @5(5) ds < o0.
3. f: R" —> R is bounded.

Define, for t € [0, T],

t t
Y(t) = f @ (s) dB(s) +J ps)a(s) ds
0 0

Then
T

fY(D) =Vy+ J u(t,w) o (a(t) +W() dt
0

where |A| = detA and A is the inverse of the covariance matrix of Y,

1
Vo=Qm™2/IAl | fO)exp (—EyTAy) dy
Rn

and
1
u(t,w) = 2m) 2/ |A] | fO) exp® (—Ecy—Y(t))ToA(y—Y(t))) o (=Y TAp®) dy
er

Proof. Refer to [A@UO1, Theorem 4.4]. O

The next result is a simpler version of [HA03, Lemma 3.21].

Theorem 2.2. Let ¢p and ¢g denote the Wick product for the probability measures P and Q
respectively, and u as in the Girsanov Theorem. Then, Fop G =F ¢ G.

Proof. Let F = exp® (fooo () dW(t)) and G = exp® ( _f Ooo g(®) dW(t)). Then,

o 1
Fop G =exp (f (f(s) +g(s)) dW(s) - §|[f+g||2)
0
Applying Girsanov to F and G,
o0 o0
F=exp® (J £(s) dW(s) - {f, u)Lz) , and G=exp® (J g(s) dW(s) - (g, u)Lz)
0 0
Computing the product,
o ~ 1
Foo G = exp U (f(s) +&(s)) dW(s) - 5|lf+g||2 -{f+e& u)Lz)
0
e 1
= exp (J (f(s) +g(s)) dW(s) - §|lf+g||2)
0

Hence, Fop G = F ¢q G for exponential functions. By density, we have the result. O



3 Main Result

Theorem 3.1. Suppose that p is constant, and u(t), as defined in (7), is deterministic and satisfying
E[u?(t)] < 00. Then the replicating portfolio for hedging 11k 00) (W(T)) is

(13)

2
010 =P T O 2r(T-0) 207 (O] (O exp (‘W)

2(T-1t)

Proof. First, notice that F = I[K,oo) (WD) 12 (P). Thus, we can use (12).

Now we compute Eq[DF | #;] using the Donsker delta function by taking f(y) = 1[x c0) (),
and Y(T) = W(T). By the Theorem 2.1,

oo

_ 02
(2nT)_1/2 exp® (_&) dy

11K, 00) (W(T)) = J o

K

By the Chain Rule for the Wick product,

IR of G=WI?Y) y-W(m)
De(1k, 00y (W(T))) = JK @nT) 2 exp (— o )o &
o) 12 et [ KW
2rT) exp( 7T

Denoting by é the Wick product with respect to the probability measure Q, then since ¢ = o
(Theorem 2.2), we have

s (K-W(T))*2
E[D; (1[g 00)(W(T))) | Z:] =Eq [(Zﬂ:T)"l/z exp® (—%) ' %]

o K-W(T)+ (s) ds)
= (ZNT)_l/zEQ P’ (_ 2£‘O — ) Tt

2
= (27'["[‘)_1/2 exp (_W)

2(T-1t)
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