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1 Context Setting

Consider a market consisting of a riskless asset S0 with

riskless asset

¨

dS0(t)= ρ(t)S0(t) dt
S0(0)= 1

(1)

and a risky asset S1 satisfying

risky asset

¨

dS1(t)= µ(t)S1(t) dt+σ(t)S1(t) dW(t)
S1(0)> 0

(2)

where ρ(t),µ(t), and σ(t) ̸= 0 are F-adapted processes satisfying the following condition

E

�

∫ T

0
(|ρ(t)|+ |µ(t)|+σ2(t)) dt

�

<∞

Let θ0(t) and θ1(t) denote the number of units of S0(t) and S1(t), respectively. Then the value
of the portfolio θ = (θ0,θ1) is Vθ = θ0S0 + θ1S1.

We also suppose that the portfolio is self-financing, i.e.,

dVθ (t)= θ0(t)dS0(t)+ θ1(t)dS1(t) (3)

Substituting

θ0(t)=
Vθ (t) – θ1(t)S1(t)

S0(t)
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1 CONTEXT SETTING

into (3) and using (1) we have

dVθ = ρ(t)(Vθ (t) – θ1(t)S1(t))dt+ θ1(t)dS1 (4)

Replacing (2),

dVθ = [ρ(t)Vθ (t)+ (µ(t) –ρ(t))θ1(t)S1(t)]dt+σ(t)θ1(t)S1(t)dW(t) (5)

Our goal is to find a replicating (hedging) portfolio

Vθ (T)= F, P – a.s. (6)

where F is Ft-measurable. For an European call, for example, F=max{S1 – K,0} = (S1 – K)+.

How much do we need to invest at time t = 0 and which portfolio θ(t) should we use? Are Vθ

and θ unique?

We consider (Vθ (t),θ1(t)) an F-adapted process. The equations (4) and (6) form a backward
stochastic differential equation (BSDE). To find an explicit solution, we can change the measure
and apply Clark-Ocone.

Define

u(t)=
µ(t) –ρ(t)
σ(t)

(7)

Using the change of measure as in the last section, we can write

dVθ = [ρ(t)Vθ (t)+ (µ(t) –ρ(t))θ1(t)S1(t)]dt+σ(t)θ1(t)S1(t)d eW(t)

–σ(t)θ1(t)S1(t)σ–1(t)(µ(t) –ρ(t))dt

= ρ(t)Vθ (t)dt+σ(t)θ1(t)S1(t)d eW(t)

(8)

Let
Uθ (t)= e–

∫ t
0ρ(s) dsVθ (t)

Then using (8),

dUθ (t)= e–
∫ t

0ρ(s) dsσ(t)θ1(t)S1(t) d eW(t)

or, equivalently,

e–
∫ t

0ρ(s) dsVθ (T)= Vθ (0)+

∫ T

0
e–
∫ t

0ρ(s) dsσ(t)θ1(t)S1(t) d eW(t) (9)

Let us recall the following result.

Theorem 1.1 (Clark-Ocone for L2(P) Under Change of Measure). Suppose that F ∈ L2(P) is
FT-measurable, and that the following conditions are met

1. EQ[|F|] <∞;

2. EQ

�

∫ T
0 |DtF|2 dt

�

<∞;

3. EQ

�

|F|
∫ T

0

�

∫ T
0 Dtu(s) dW(s)+

∫ T
0 u(s)Dtu(s) ds

�2
dt
�

<∞.
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Then

F= EQ[F] +

∫ T

0
EQ

��

DtF – F

∫ T

t
Dtu(s) d eW(s)

�

�

�

�

�

�

Ft

�

d eW(t)

where eW(t) is a Brownian motion under the measure Q and DtF ∈ G ∗ is the Hida-Malliavin
derivative.

Proof. Analogous to the case for D1,2. See, e.g. [Oku10].

Applying the generalized Clark-Ocone formula to

G= e–
∫ t

0ρ(s) dsF

we have

G= EQ[G] +

∫ T

0
EQ

��

DtG – G

∫ T

t
Dtu(s) d eW(s)

�

�

�

�

�

�

Ft

�

d eW(t) (10)

Comparing (9) with (10), we have Vθ (0) = EQ[G] by uniqueness, and the replicating portfolio
is given by

θ1(t)= e–
∫ t

0ρ(s) dsσ–1(t)S–1
1 (t)EQ

��

DtG – G

∫ T

t
Dtu(s) d eW(s)

�

�

�

�

�

�

Ft

�

(11)

In particular, if ρ and µ are constants, and σ(t)= σ ̸= 0, then

u(t)= u=
µ –ρ
σ

is also constant, whence Dtu= 0. Then the equation (11) simplifies to

θ1(t)= eρ(t–T)σ–1S–1
1 (t)EQ[DtF |Ft] (12)

In this presentation, we consider a digital option, which has a payoff at maturity

F= 1[K,∞)(W(T))

where K is the exercise price. We aim to compute the conditional expectation EQ[DtF |Ft].

2 Necessary Results

To do that, we need the following concept.

Definition 2.1 (Donsker delta function). Let Y : Ω −→ R, Y ∈ G ∗. The continuous function

δY(·) :R −→G ∗

is the Donsker delta function of Y if it has the property that
∫

R
f(y)δY(y) dy = f(Y) a.s.

for all measurable f : R −→ R such that the integral converges.
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2 NECESSARY RESULTS

Theorem 2.1. Suppose that

1. α : [0, T] −→ Rn is a deterministic function such that ∥α∥2 =
∫ T

0 α
2(s) ds<∞.

2. ϕ : [0, T] −→ Rn×n is a deterministic function such that ∥ϕ∥2 =
∑n

i,j=1
∫ T

0 ϕ
2
ij(s) ds<∞.

3. f : Rn −→ R is bounded.

Define, for t ∈ [0,T],

Y(t)=

∫ t

0
ϕ(s) dB(s)+

∫ t

0
ϕ(s)α(s) ds

Then

f(Y(T))= V0 +

∫ T

0
u(t,ω) ⋄ (α(t)+W(t)) dt

where |A|= detA and A is the inverse of the covariance matrix of Y,

V0 = (2π)–n/2
Æ

|A|

∫

Rn
f(y) exp

�

–
1
2

yTAy
�

dy

and

u(t,ω)= (2π)–n/2
Æ

|A|

∫

Rn
f(y) exp⋄

�

–
1
2

(y – Y(t))T ⋄A(y – Y(t))
�

⋄ ((y – Y(t))TAϕ(t)) dy

Proof. Refer to [AØU01, Theorem 4.4].

The next result is a simpler version of [HØ03, Lemma 3.21].

Theorem 2.2. Let ⋄P and ⋄Q denote the Wick product for the probability measures P and Q
respectively, and u as in the Girsanov Theorem. Then, F ⋄P G= F ⋄Q G.

Proof. Let F= exp⋄
�

∫∞
0 f(t) dW(t)

�

and G= exp⋄
�

∫∞
0 g(t) dW(t)

�

. Then,

F ⋄P G= exp

�∫ ∞

0
(f(s)+ g(s)) dW(s) –

1
2
∥f + g∥2

�

Applying Girsanov to F and G,

F= exp⋄
�∫ ∞

0
f(s) d eW(s) – 〈f , u〉L2

�

, and G= exp⋄
�∫ ∞

0
g(s) d eW(s) – 〈g, u〉L2

�

Computing the product,

F ⋄Q G= exp

�∫ ∞

0
(f(s)+ g(s)) d eW(s) –

1
2
∥f + g∥2 – 〈f + g, u〉L2

�

= exp

�∫ ∞

0
(f(s)+ g(s)) dW(s) –

1
2
∥f + g∥2

�

Hence, F ⋄P G= F ⋄Q G for exponential functions. By density, we have the result.
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3 Main Result

Theorem 3.1. Suppose that ρ is constant, and u(t), as defined in (7), is deterministic and satisfying
E[u2(t)] <∞. Then the replicating portfolio for hedging 1[K,∞)(W(T)) is

θ1(t)= e–ρ(T–t)(2π(T – t))–1/2σ–1(t)S–1
1 (t) exp

�

–
(K – W(t))2

2(T – t)

�

(13)

Proof. First, notice that F= 1[K,∞)(W(T)) ∈ L2(P). Thus, we can use (12).

Now we compute EQ[DtF |Ft] using the Donsker delta function by taking f(y)= 1[K,∞)(y),
and Y(T)=W(T). By the Theorem 2.1,

1[K,∞)(W(T))=

∫ ∞

K
(2πT)–1/2 exp⋄

�

–
(y – W(T))⋄2

2T

�

dy

By the Chain Rule for the Wick product,

Dt(1[K,∞)(W(T)))=

∫ ∞

K
(2πT)–1/2 exp⋄

�

–
(y – W(T))⋄2

2T

�

⋄
(y – W(T))

2T
dy

= (2πT)–1/2 exp⋄
�

–
(K – W(T))⋄2

2T

�

Denoting by ⋄̂ the Wick product with respect to the probability measure Q, then since ⋄̂= ⋄
(Theorem 2.2), we have

E[Dt(1[K,∞)(W(T))) |Ft] = EQ

�

(2πT)–1/2 exp⋄̂
�

–
(K – W(T))⋄̂2

2T

� �

�

�

�

Ft

�

= (2πT)–1/2EQ



exp⋄̂
 

–
(K – eW(T)+

∫ T
0 u(s) ds)⋄̂2

2T

!

�

�

�

�

�

�

Ft





= (2πT)–1/2 exp

�

–
(K – W(t))2

2(T – t)

�
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