

Redes Neurais Convolucionais com Função de Base Radial e Transmitância de Fase

Palavras-Chaves: Redes Neurais, Redes Neurais Convolucionais, CVNNs

Autores:

Luiz Fernando Moreira Teixeira - DECOM - FEEC

Prof. Dr. Dalton Soares Arantes (Orientador) - DECOM - FEEC

Prof. Dr. Kayol Soares Mayer (Coorientador) - DECOM - FEEC

Campinas - SP 8 de agosto de 2024

1 INTRODUÇÃO

Este trabalho estuda a arquitetura CVNN PT-RBF (Phase-Transmittance Radial Basis Function) profunda (MAYER et al., 2022), generaliza suas equações para camadas convolucionais, gera as matrizes de kernel PT-RBF Convolucional e implementa em Python na biblioteca RosenPy. A implementação foi validada em bases de dados padronizadas e problemas de equalização de canal.

2 METODOLOGIA

Nesse trabalho, partimos das equações da PT-RBF profunda, modificando-as de forma a incluir camadas convolucionais. Foram realizadas dois tipos de camadas convolucionais, uma considerando a convolução somente o regime permanente e a outra considerando regime permanente e transiente.

3 RESULTADOS E APLICAÇÕES

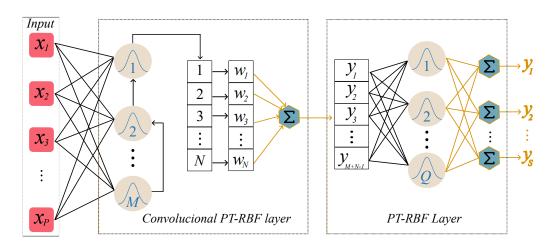


Figura 1 – Arquitetura da PT-RBF Convolucional.

A PT-RBF Convolucional foi implementada em Python, utilizando a biblioteca RosenPy (CRUZ; MAYER; ARANTES, 2022). Essa implementação permitiu testar e avaliar o desempenho da PT-RBF Convolucional tanto em uma função sintética no domínio dos números complexos quanto no problema de equalização de canal. Durante as simulações, observou-se a superioridade da PT-RBF Convolucional em regime permanente em comparação ao regime transiente e permanente.

3.1 Equalização de canal

Investigamos as arquiteturas PT-RBF profunda e PT-RBF Convolucional para a equalização de canal com multipercurso, não linearidades, mudanças de fase e ruído branco aditivo (AWGN). As simulações adotam uma modulação 4-QAM com potência unitária.

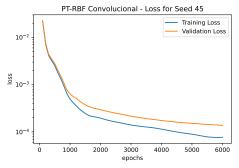
Para o treinamento da PT-RBF convolucional foi gerado uma sequência de símbolos de 5.000 e 10.000 para inferência. As tabelas abaixo mostrando os parâmetros utilizados em cada rede.

Tabela 1 – Parâmetros PT-RBF Convolucional.

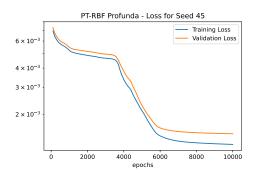
Camada	η_{ω}	η_b	η_{γ}	η_σ	Neurônios	Kernel	oshape
Convolucional	0,0005	0,0005	0,0003	0,0005	10	20	-
Fully	0,0005	0,0005	0,0003	0,0005	10	-	1

Tabela 2 – Parâmetros PT-RBF Profunda.

Camada	η_{ω}	η_b	η_{γ}	η_σ	Neurônios	oshape
Fully	0,05	0,05	0,03	0,05	6	5
Fully	0,05	0,05	0,03	0,05	5	1



(a) Curva de treinamento para PT-RBF Convolucional



(b) Curva de treinamento para PT-RBF Profunda

Figura 2 – Curvas de Treinamento

Podemos ver então pela tabela que tanto o \overline{MSE} quanto a \overline{BER} da rede convolucional foram relativamente melhores que a da rede fully-connected.

Tabela 3 – Resultados de BER e MSE médias das PT-RBFs Convolucional e Profunda.

Arquitetura	BER	MSE
PT-RBF Convolucional	$1,64 \times 10^{-5}$	$7,99 \times 10^{-5}$
PT-RBF Profunda	$2,11\times10^{-5}$	$5,50\times10^{-4}$

3.2 Aproximação de Função de Valor Complexo Sintético

Para esta análise, considera-se uma função que proporciona uma aproximação contínua (SAVITHA et al., 2008), definida por:

$$Z = Z_1^2 + Z_2^2 \tag{1}$$

onde Z_1 e Z_2 são números complexos com magnitude inferior a 2,5.

Tabela 4 – Parâmetros da PT-RBF Profunda para a função sintética

Camada	η_ω	η_b	η_{γ}	η_σ	Neurônios	oshape
Fully	0,0005	0,0005	0,0003	0,0005	6	5
Fully	0,0005	0,0005	0,0003	0,0005	5	1

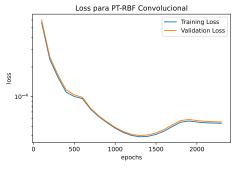
Foram realizadas 50 iterações com diferentes conjuntos de dados de treinamento para ambos os casos. Foram gerados Z_1 e Z_2 de tamanho 10.000 para os dados de treinamento e teste.

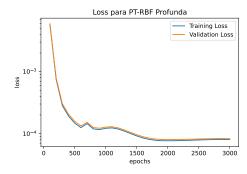
Os resultados obtidos de \overline{RMSE} , \overline{RMSE}_{Φ} (RMSE do ângulo) e \overline{RMSE}_{abs} (RMSE do módulo) são mostrados na Tabela 5.

Tabela 5 - Resultados do problema da função sintética

Arquitetura	RMSE	$\overline{\text{RMSE}}_{\Phi}$	RMSE _{abs}
PT-RBF Convolucional	0,0326	13,18°	0,026
PT-RBF Profunda	0,0387	15,00°	0,031

A Figura 3 mostra as curvas de treinamento para as duas arquiteturas utilizadas.





(a) Curva de treinamento função sintética PT-RBF Convolucional

(b) Curva de treinamento função sintética PT-RBF Profunda

Figura 3 – Curvas de treinamento para as duas arquiteturas comparadas

4 CONCLUSÃO

Neste trabalho, introduzimos camadas convolucionais na PT-RBF profunda e avaliamos duas abordagens: uma considerando os regimes transiente e permanente, e outra apenas o regime permanente. A PT-RBF Convolucional em regime permanente demonstrou superioridade, apresentando melhor convergência, menores BER e MSE na equalização de canal, e menores RMSEs na aproximação de funções contínuas, em comparação à PT-RBF Profunda. Esses resultados indicam que a PT-RBF Convolucional pode trazer melhorias significativas em desafios de telecomunicações, como beamforming e estimativa de canal, sugerindo novos estudos futuros.

REFERÊNCIAS BIBLIOGRÁFICAS

CRUZ, A. A.; MAYER, K. S.; ARANTES, D. S. RosenPy: An open source Python framework for complex-valued neural networks. **SSRN**, p. 1–18, nov. 2022. Citado na p. 2.

MAYER, K. S. et al. Deep phase-transmittance RBF neural network for beamforming with multiple users. **IEEE Wireless Communications Letters**, v. 11, n. 7, p. 1498–1502, jul. 2022. Citado na p. 2.

SAVITHA, R. et al. Complex-valued function approximation using an improved BP learning algorithm for feed-forward networks. *In*: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). [S.l.: s.n.], 2008. P. 2251–2258. Citado na p. 4.