

ARDUINO, TEORIA E APLICAÇÕES: FOTOBIORREATOR CONTROLADO POR ARDUÍNO

Palavras-Chave: Arduino, Foto biorreator, Wolffia brasiliensis, sensores, atuadores

Autores:

HENRIQUE RODRIGUES MOTTA, FCA – UNICAMP

RAFAEL OLIVEIRA DA LUZ, FCA – UNICAMP

MANUELA VICTORIA MENTADO MENDOZA, FCA – UNICAMP

Prof. Dr. JAIME HIDEO IZUKA (orientador), FCA – UNICAMP

INTRODUÇÃO

O projeto visa a construção de um protótipo capaz de formar um ambiente favorável ao cultivo da *Wolffia brasiliensis*, com o uso de microcontroladores aliado as novas tecnologias de simulação, prototipagem e conhecimento de engenharia e eletrônica nos proporciona todo o recurso para a construção deste protótipo.

Desse modo o projeto conta com dispositivos que se comunicam entre si para manter esse ambiente controlado para a planta determinada. Logo a programação destes dispositivos pelo Arduino nos proporciona todas as variáveis e toda a informação necessária para fazer o circuito funcionar da forma desejada.

Assim os circuitos constam com os chamados sensores e atuadores, no entanto, os sensores nos fornecem a leitura de algum parâmetro do ambiente, como temperatura, e os atuadores entram em ação para que os parâmetros desejados sejam atingidos.

Então aliado a simulação e a prototipagem conseguimos prever e comandar todos as possíveis situações do ambiente e proporcionar, da melhor forma, uma situação favorável para que as plantas se desenvolvam.

METODOLOGIA/FUNCIONAMENTO

O projeto de medição e controle do protótipo foi desenvolvido virtualmente através da ferramenta Tinkercad. Foi possível verificar o programa de controle e as ligações elétricas entre todos os componentes. O projeto virtual desenvolvido está apresentado na figura 1.

A próxima etapa foi o projeto e construção física do protótipo. Um esboço inicial do protótipo está apresentado na figura 2 b. O modelo CAD está apresentado na figura 2 a.

A planta Wolffia brasiliensis, conhecida como Lentilha D'água Brasileira, é uma pequena planta aquática flutuante comum no Brasil, encontrada em corpos de água doce (DOS SANTOS, 2023). Ela necessita de uma temperatura ideal de 22°C e 28°C, e para se desenvolver da melhor forma, ela necessita de luz intensa e aeração da água. Por isso foi utilizado alguns atuadores que serão usados para esta função.

A tabela (Tabela 1) abaixo descreve melhor quais são nossos sensores e atuadores:

Tabela 1: Componentes Necessários no Foto biorreator.

Tipo	Componente	Área de Atuação	Forma de Controle
Sensor	DS18B20	Temperatura	Automático
Atuador	Placa Peltier	Temperatura	Automático
Sensor	Foto resistor LDR	Luminosidade	Automático
Atuador	Fita Led RGB	Luminosidade	Automático
Atuador	Display LDC I2C	Interação	Automático
Atuador	Bomba d'água	Homogeneização	Manual

O sensor de temperatura faz a leitura da temperatura, que em condições ideais, ele precisa estar entre 22°C e 28°C para que a planta Wolffia brasiliensis se desenvolva. Para manter esta temperatura utilizou-se o atuador Peltier, que controla essa temperatura para se manter entre os parâmetros de temperatura mencionados anteriormente. Utilizou-se um cooler para ajudar a isolar um dos lados da Peltier.

Como foi mencionado, a planta necessita de iluminação intensa. Dessa forma, o sensor LDR faz a leitura da luminosidade local, e em caso de estiver uma iluminação baixa, a fita led aumenta a luminosidade para que continue em uma iluminação intensa.

O Display foi implementado para se ter controle das informações fornecidas pelos sensores, ou seja, ele indica quais informações estão sendo lidas pelos sensores, para que possamos ver se o funcionamento dos atuadores então corretos e conseguirmos fazer controle do ambiente.

No entanto, pelo fato de a planta precisar de homogeneização do meio (água), foi colocado uma bomba manual. E em momentos em que se precisa retirar uma amostra da planta é possível desligar a bomba.

Por fim, foi construída uma placa de circuito impresso indicada na figura 4, para facilitar a comunicação entre os componentes e organização.

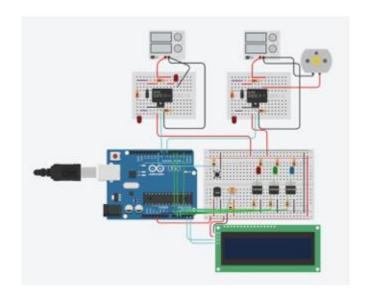


Figura 1: Simulação do Arduíno e componentes.

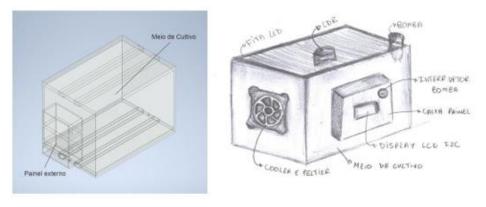


Figura 3: Montagem do Protótipo (a) e Teste Completo (b)

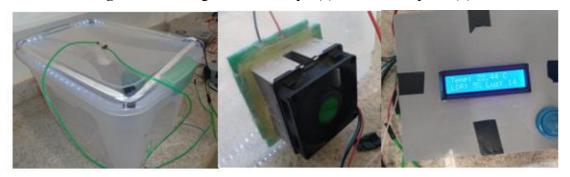
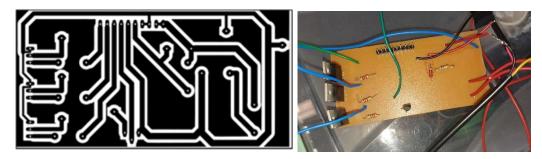



Figura 4: Placa do circuito impresso. Projeto (a) e Placa física (b)

RESULTADOS

Após a simulação, foi feito a construção do protótipo, que consiste em uma caixa, onde estão presentes os sensores de temperatura (DS18B20) e o sensor de luminosidade (LDR) com os atuadores, Peltier com o lado quente virado para dentro e junto ao cooler que está ajudando a isolar a outra parte, a bomba e a fita LED na tampa da caixa, e também na parte de fora há uma caixa com os componentes eletrônicos como a protoboard que serve para a conexão e alocação desses componentes, o arduino, o relé que faz a conexão dos atuadores que necessitam de maior energia com o Arduino e uma fonte externa e o display LCD com as informações que os sensores estavam lendo, ele está presente na tampa da caixa dos componentes.

Colocamos água dentro da caixa e observamos seu funcionamento durante alguns dias, e então, após isso observamos que havia algumas inconsistências com o display e alguns sensores, que, no entanto, estavam apresentando um mal contato e leituras incorretas, por consequência, foi feito uma placa de circuito impresso para tentar corrigir esses erros.

Contudo mesmo com inconsistências o protótipo funcionou da maneira pretendida e assim observamos todos os atuadores funcionando e deixando o ambiente da caixa da forma correta.

CONSIDERAÇÕES FINAIS

Para este projeto tem-se como objetivo a construção do protótipo de um fotobiorreator em que será feito o cultivo da planta wolffia brasiliensis. O fotobiorreator terá seu ambiente controlado por meio de um Arduino.

Para a construção do protótipo, foram feitas simulações em softwares e circuitos montados em protoboards para realizar a montagem do código, que por sua vez seria inserido no Arduino. Este código tem como objetivo definir parâmetros para as duas principais grandezas que influenciarão no cultivo da planta e irão variar conforme o tempo, essas grandezas são: temperatura e luminosidade. A temperatura foi definida para estar dentro de um intervalo de 22 à 28°C e seu controle será feito por um sensor de temperatura DS18B20 e uma pastilha termoelétrica (peltier), já a luminosidade será medida por um sensor LDR (Light Dependent Resistor) e o atuador será uma fita LED RGB. Com isso teremos um ambiente controlado para o crescimento da planta

A Montagem final do protótipo está sendo realizado em uma caixa plástica sutilmente afunilada, nela será acoplada os atuadores e sensores que irão diretamente para a o circuito da PCI e após isso para o microcontrolador Arduino. A montagem está sendo a parte mais difícil do projeto por conta do aparecimento de alguns fatores inesperados, como por exemplo, ter que utilizar uma fonte própria para o acionamento da bomba D'água, pois se fosse utilizado a fonte chaveada de 12V (mesma utilizada para ligar a fita LED) ocorreria uma interferência no LCD.

REFERENCIAS

SANTOS, Emanuelle Bezerra dos. INFLUÊNCIA DO BIOESTIMULANTE A BASE DE FARINHA DE ALGAS ARRIBADAS NO CRESCIMENTO DA LENTILHA D'ÁGUA (Wolffia brasiliensis) EM SISTEMA HIDROPÔNICO. 2023. 60 f. Trabalho de Conclusão de Curso (Graduação em Engenharia de Biotecnologia e Bioprocessos) — Universidade Federal de Campina Grande, Sumé, 2023. Disponível em: http://dspace.sti.ufcg.edu.br:8080/xmlui/bitstream/handle/riufcg/30977/EMANUELLE %20BEZERRA%20DOS%20SANTOS%20-

%20TCC%20ENG.%20DE%20BIOTECNOLOGIA%20E%20BIOPROCESSOS%20C DSA%202023.pdf?sequence=1&isAllowed=y>. Acesso em: 06 agosto 2024.