

EFEITO DOS ÓLEOS ESSENCIAIS DE ORÉGANO E TOMILHO SOBRE A FORMAÇÃO DE BIOFILME DE LEVEDURAS E FUNGOS FILAMENTOSOS

Palavras-Chave: ÓLEO ESSENCIAL, FUNGOS FILAMENTOSOS, LEVEDURAS

Autores(as):

Isabelle Dias Vieira, FEA-UNICAMP

Aluna de Doutorado Colaboradora: Naara Aparecida Almeida, DCAN-FEA-UNICAMP

Orientadora: Prof(a). Dr(a). Liliana de Oliveira Rocha, DCAN-FEA-UNICAMP

INTRODUÇÃO:

Os fungos são importantes contaminantes de alimentos, sendo responsáveis pela deterioração de frutos e sementes desde seu cultivo, armazenamento, transporte, até o produto processado. Nas indústrias de bebidas processadas, são predominantes micro-organismos que podem apresentar como uma de suas características, a termorresistência, além de estarem envolvidos na formação de biofilmes fúngicos, que conferem proteção ao micro-organismo tanto em relação às operações do processo bem como às técnicas de higienização da instalação (Miranda, Leães e Copetti, 2022; Rico-Muoz e Santos, 2019).

Considerando a preocupação com os resíduos dos compostos sanitizantes na indústria de alimentos quando estes são aplicados com o intuito de realizar as operações de higienização da linha de processamento, substâncias de origem natural com propriedades antimicrobianas, como os óleos essenciais (OEs), tem sido avaliados com o intuito de viabilizar o seu uso como agentes sanitizantes.

Os OEs são substâncias de origem natural que apresentam capacidade antimicrobiana no controle de bactérias patogênicas e fungos deteriorantes de alimentos. Devido suas propriedades, estes têm sido aplicados na indústria de alimentos, sendo os principais OEs utilizados em aplicações antibiofilmes, conforme a literatura científica: cravo, canela e tomilho (Banu et al., 2018; Rajkowska et al., 2019, Kacaniová et al., 2021).

Desse modo, o estudo tem como objetivo investigar a eficácia do uso dos óleos essenciais de tomilho e orégano sobre a formação de aderência das células de leveduras e fungos filamentosos, a fim de avaliar a resistência das células aderidas das cepas sob atuação dos OEs.

METODOLOGIA

Para execução das análises do projeto, as cepas fúngicas foram reativadas em meio MEA a 25°C durante 2 e 5 dias, para leveduras e fungos filamentosos, respectivamente. Para a avaliação da eficácia

antimicrobiana sobre as células formadoras de biofilme, foram utilizados os óleos essenciais (OEs) de orégano e tomilho.

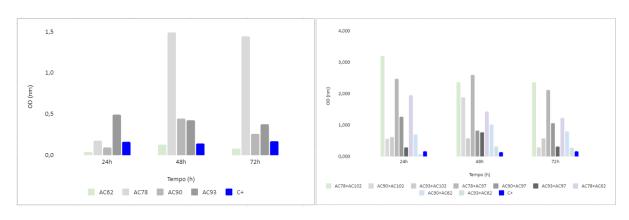
Para a análise da atuação antimicrobiana dos OEs, foram realizadas as análises de concentração mínima inibitória (MIC) e concentração mínima fungicida (MFC). Primeiramente, os inóculos foram padronizados em caldo RPMI 1640, conforme a escala McFarland, sendo em 10⁸ células/mL para leveduras e a 10⁵ esporos/mL para fungos filamentosos. Subsequentemente, foi realizada a análise de MIC por microdiluição seriada em microplacas de poliestireno de 96 poços, com as concentrações variando de 2-0,03% dos OEs As microplacas foram incubadas a 25°C durante 2 e 5 dias, para leveduras e fungos filamentosos, respectivamente. Posteriormente à incubação, foi feita a inoculação do poço resultante do MIC e de seus anteriores em meio MEA e foram inoculados durante 5 dias a 25°C (CLSI, 2008).

Para a avaliação da capacidade de aderência por leveduras e fungos filamentosos, os inóculos padronizados em meio YPD, seguindo a escala McFarland como foi realizado para a análise de MIC, foram depositados em microplacas de poliestireno de 24 poços. As microplacas foram incubadas a 25°C sob agitação durante os períodos de 24, 48 e 72 horas. Posteriormente aos determinados períodos, as microplacas foram lavadas com água destilada estéril para a remoção das células planctônicas e foram realizadas análises de quantificação colorimétrica por Cristal Violeta e quantificação das células viáveis recuperadas por plaqueamento em meio MEA.

Para a avaliação da capacidade dos óleos essenciais como sanitizantes foi realizada a análise dos óleos essenciais sobre as células aderidas durante os períodos de 24, 48 e 72 horas, utilizando as concentrações de ½ MIC, MIC, 2 MIC e 4 MIC, avaliando a partir da recuperação de células viáveis em meio PDA. A análise estatística foi realizada utilizando o software de Análise Estatística (SAS) versão 9.1.

RESULTADOS E DISCUSSÃO:

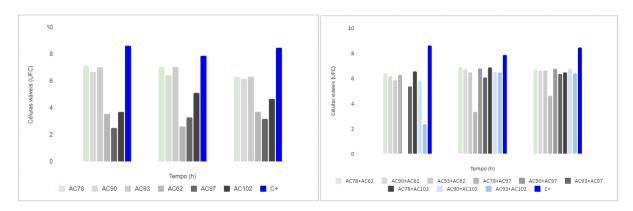
Em relação aos resultados obtidos do MIC, observou-se variação na concentração inibitória dos OEs entre 2 a 0,125%, como apresentado na Tabela 1. Ademais, os resultados de MFC, também apresentados na Tabela 1, apresentaram valores similares ao resultado do MIC.


Tabela 1. Resultados da Concentração Mínima Inibitória (MIC) e Concentração Mínima Fungicida (MFC) dos óleos testados nas amostras de fungos filamentosos e leveduras.

Código	Micro-organismo	Óleo essencial	MIC	MFC
AC78	Whickerhamomyces anomalus	Orégano	0,06%	0,125%
AC78	W. anomalus	Tomilho	0,25%	0,25%
AC90	Pichia kudriavzevii	Orégano	0,25%	0,5%
AC90	P. kudriavzevii	Tomilho	1%	1%
AC93	P. kudriavzevii	Orégano	0,5%	0,5%

AC93	P. kudriavzevii	Tomilho	2%	2%
AC62	Paecilomyces variotii	Orégano	0,125%	0,125%
AC62	P. variotii	Tomilho	0,125%	0,125%
AC97	P. variotii	Orégano	0,25%	1%
AC97	P. variotii	Tomilho	0,125%	0,5%
AC102	P. variotii	Orégano	0,125%	0,25%
AC102	P. variotii	Tomilho	0,125%	0,5%

A avaliação do potencial de adesão das células de forma individual e em conjunto por quantificação colorimétrica – Cristal Violeta, conforme apresentado nos Gráficos 1 e 2, permite analisar o aumento de aderência nos períodos de 24h e 48h e redução em 72h, sendo os fungos filamentosos os mais afetados. Os isolados de *P. variotti* (AC97 e 102) não foram capazes de aderir à superfície. Além disso, foi possível observar pelos resultados obtidos que a interação entre leveduras e fungos filamentosos favoreceu a adesão dos fungos filamentosos.


Gráficos 1 e 2. Análise da adesão das células por leveduras e fungos filamentosos individual e em conjunto, por Cristal Violeta.

Além disso, a avaliação de aderência individual e em conjunto também foi realizada por contagem das unidades formadoras de colônias (UFC), conforme apresentado nos gráficos 3 e 4. A partir da análise, foi possível observar que não houve diferenças significativas na contagem dos períodos analisados para as cepas de fungos filamentosos e leveduras. No entanto, para as cepas em conjunto, foi possível observar um aumento crescente na contagem por período analisado.

A ação sanitizante dos OEs de orégano e tomilho foi avaliado com tempo de exposição de 30 minutos, sendo os resultados obtidos da análise realizada nos períodos de 24h e 48h apresentados nas Figuras 1e 2 para leveduras, fungos filamentosos e as cepas em conjunto, respectivamente, para o óleo essencial de orégano e Figuras 3 e 4, sendo leveduras, fungos filamentosos e as cepas em conjunto, respectivamente, para o óleo essencial de tomilho. Não foi realizada a análise para o período de 72 horas, visto que durante os testes de aderência das células, o mesmo não apresentou dados efetivos, havendo declínio no período de 72 da aderência, que pode ser devido à dispersão das células não aderidas, ou ainda, devido à agitação constante durante o período de adesão.

Gráficos 3 e 4. Contagem UFC de fungos filamentosos e leveduras a partir da adesão das células formadoras de biofilme por cepas individual e em conjunto, respectivamente.

Figuras 1e 2. Avaliação da ação sanitizante do óleo essencial de orégano sobre as cepas de leveduras, fungos filamentosos e em conjunto, respectivamente.

	OE ORÉGANO									
Leveduras										
	1/2	ИIC	M	IC	2 N	ЛIC	4 N	ЛС		
	24h	48h	24h	48h	24h	24h 48h		48h		
AC78	R	S	S	S	S	S	S	S		
AC90	S	S	S	S	S	S	S	S		
AC93	S	S	S S S		S	S	S			
		Fun	gos F	ilame	ntoso	s				
	1/2 №	ИIC	М	IC	2 N	ЛIC	4 N	ЛС		
	24h	48h	24h	48h	24h	48h	24h	48h		
AC62	S	S	S	S	S	S	S	S		
AC97	S	S	S	S	S	S	S	S		
AC102	S	S	S	S	S	S	S	S		

		OE	ORE	GANO						
Leveduras e Fungos Filamentosos em conjunto										
	1/2	ИIC	M	IC 2		ЛС	4 N	ЛIC		
	24h	48h	24h	48h	24h	48h	24h	48h		
AC62/AC78	S	R	S	S	S	S	S	S		
AC62/AC90	R	R	R	S	S	S	S	S		
AC62/AC93	R	R	S	S	S	S	S	S		
AC97/AC78	R	R	R	R	S	R	S	S		
AC97/AC90	S	S	S	S	S	S	S	S		
AC97/AC93	S	S	S	S	S	S	S	S		
AC102/AC78	S	S	S	S	S	S	S	S		
AC102/AC90	S	R	S	S	S	S	S	S		
AC102/AC93	S	R	S	S	S	S	S	S		

Figuras 3 e 4. Avaliação da ação sanitizante do óleo essencial de tomilho sobre as cepas de leveduras, fungos filamentosos individuais e em conjunto, respectivamente.

OE TOMILHO									
Leveduras									
	1/2 1	ИIC	M	MIC 2 MIC			4 MIC		
	24h	48h	24h	48h	24h	48h	24h	48h	
AC78	S S		S	S	S	S	S	S	
AC90	S S		S	S	S	S	S	S	
AC93	S	S	S	S	S	S	S	S	
		Fun	gos F	ilame	ntoso	s			
	1/2 1	ИIC	M	IC	2 N	ЛС	4 MIC		
	24h	48h	24h	48h	24h	48h	24h	48h	
AC62	S	S	S	S	S	S	S	S	
AC97	S	S	S	S	S	S	S	S	
AC102	S	S	S	S	S	S	S	S	

	OE TOMILHO								
Leveduras e Fungos Filamentosos em conjunto									
	½ MIC		М	IC	2 N	/IC	4 N	ИC	
	24h	48h	24h	48h	24h	48h	24h	48h	
AC62/AC78	S	R	S	S	S	S	S	S	
AC62/AC90	S	R	S	S	S	S	S	S	
AC62/AC93	S	R	S	S	S	S	S	S	
AC97/AC78	S	S	S	S	S	S	S	S	
AC97/AC90	S	S	S	S	S	S	S	S	
AC97/AC93	S	S	S	S	S	S	S	S	
AC102/AC78	S	S	S	S	S	S	S	S	
AC102/AC90	S	S	S	S	S	S	S	S	
AC102/AC93	S	S	S	S	S	S	S	S	

A partir dos resultados apresentados nas tabelas acima, nota-se que para a maioria das cepas, ambos óleos essenciais foram eficientes nas concentrações entre 0,03 a 8%, nas concentrações acima de ½ MIC. Entretanto quando temos a combinação de leveduras com os fungos filamentosos a cepas 97/78 apresentam resistência a concentração do MIC para o OE de orégano, uma vez que quando em conjuntos foram utilizados o menor de MIC encontrado, ou seja para essa combinação 0,06% no período de 48 horas. Já para tomilho é possível notar que todas as cepas apresentaram maior sensibilidade ao OE como sanitizante nas concentrações do MIC, 2 e 4 MIC em ambos os tempos (24 e 48 horas).

CONCLUSÕES:

A partir dos resultados obtidos durante as análises avaliando o potencial de adesão das células, foi possível observar alto potencial de adesão das cepas de leveduras e baixo potencial das cepas de

fungos filamentosos. No entanto, quando em conjunto à cepa de levedura, a cepa de fungo filamentoso apresentou maior potencial.

Ademais, foi possível avaliar a ação sanitizante dos óleos essenciais de orégano e tomilho sobre as cepas de leveduras e fungos filamentosos de modo individual e em conjunto. Para o óleo essencial de orégano, foi possível observar resistência à ação sanitizante em baixas concentrações (1/2 MIC e MIC) em 24 horas, quando avaliado sobre a adesão das cepas em conjunto, especialmente, *P. variotii* e *W. anomalus* e *P. variotii* e *P. kudriavzevii*. Por fim, foi possível observar ótima ação sanitizante do óleo essencial de tomilho em comparação ao de orégano sobre as células aderidas, em ambos os tempos testados.

BIBLIOGRAFIA

BANU, S. F.; RUBINI, D.; SHANMUGAVELAN, P.; MURUGAN, R.; GOWRISHANKAR, S.; PANDIAN, S. K.; NITHYANAND, P. **Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by Candida species**. Journal de Mycologie Médicale, v. 28, n. 2, p. 332-339, 2018. http://dx.doi.org/10.1016/j.mycmed.2018.02.012.

Hussain, M. S.; Oh, D. H. Substratum attachment location and biofilm formation by Bacillus cereus strains isolated from different sources: Effect on total biomass production and sporulation in different growth conditions. Food Control, v. 77, p. 270-280, 2017.

Instituto de Padrões Clínicos e Laboratoriais. **Método de referência para testes de suscetibilidade** antifúngica por diluição em caldo de fungos filamentosos: padrão aprovado, documento CLSI **M38- A2 da 2a edição**. Instituto de Padrões Clínicos e Laboratoriais, Wayne, PA. 2008.

KAČÁNIOVÁ, M.; GALOVIČOVÁ, L.; BOROTOVÁ, P.; VALKOVÁ, V.; ĎŎRANOVÁ, H.; KOWALCZEWSKI, P. Ł.; AHL, H. A. H. S.; HIKAL, W. M.; VUKIC, M.; SAVITSKAYA, T. Chemical Composition, In Vitro and In Situ Antimicrobial and Antibiofilm Activities of Syzygium aromaticum (Clove) Essential Oil. Plants, v. 10, n. 10, p. 2185.2021.

MIRANDA, A. C.; LEÃES, G. F.; COPETTI, M. V. **Fungal biofilms: insights for the food industry**. Current Opinion in Food Science, v. 46, p. 100846, 2022.

RICO-MUNOZ, E. & SANTOS, J. L. P. **The fungal problem in thermal processed beverages**. Current Opinion in Food Science, v. 29, p. 80-87,2019.