HESPERIDINA, A BIOFLAVONA DA LARANJA, COMO IMPORTANTE PRÓ-DROGA: SUA PURIFICAÇÃO E A NANONIZAÇÃO

Letícia H. B. Liu*, Danijela Stanisic, Ljubica Tasic.

Resumo

A hesperidina é um bioflavanóide encontrado em frutas cítricas e possui diversas propriedades biológicas interessantes. Entretanto a hesperidina é co-isolada com outras moléculas (diosmina e naringina) da casca de laranja. As moléculas supracitadas apresentam estruturas e pesos moleculares bastante semelhantes. Dessa forma, o processo de isolamento e de purificação da hesperidina será realizado por cromatografia líquida em coluna. Outro foco do projeto é a obtenção de partículas nanonizadas e estáveis, cujo tamanho possibilite a melhor absorção trandérmica dessa pródroga. A hesperidina tem sido reconhecida como um potente anti-oxidante, anti-inflamatório, anti-cancerígeno, hipolipidémico e agente vasoprotetor.

Palavras-chave:

laranja, bioflavona, hesperidina, pró-droga, cromatografia líquida em coluna, nanocristais.

Introdução

Um dos nossos objetivos é a obtenção da hesperidina pura, separando-a das outras moléculas bioativas da laranja, tais como da diosmina e naringina, utilizando cromatografia líquida em coluna 1,2,3.

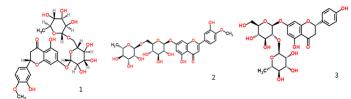


Figura 1. As estruturas da hesperidina (1), diosmina (2) e naringina (3).

Outro objetivo nosso é obter partículas nanométricas e estáveis da hesperidina, tornando assim a sua absorção transdérmica mais eficiente esultaria em uma menor quantidade utilizada da hesperidina no produto e uma maior ação vasoprotetora dessa pró-droga no organismo⁵.

Resultados e Discussão

A extração da hesperidina foi realizada a partir da casca seca da laranja de acordo com o método previamente descrito e usado com frequência^{1,2,3}.

A separação da hesperidina da diosmina e naringina aplicando cromatografia em camada delgada mostrou resultados promisores apenas na separação da naringina da mistura contendo os três bioflavanóides. Aplicando uma fase móvel contendo acetato de etila: clorofórmio: acetilnitrila: ácido acético: trietilamina em proporção de 3:4:2:1:2 (v/v/v/v/v) foi possível separar a naringina até o momento. Os índices de retenção (Rf) de 0,46 para a hesperidina e diosmina e de 0,25 para a naringina foram observados. As diversas alterações nas proporções da fase móvel estão sendo testadas para uma eficaz separação das três substâncias.

A nanonização da hesperidina contou com a aplicação da técnica NANOEDGE™. A técnica de NANOEDGE™ para a produção de nanopartículas constitui-se da dissolução da amostra em menor quantidade de solvente possível seguida pela adição de solvente no qual a hesperidina é insolúvel. Aplicando a pressão, por ultrassom, promove-se o choque entre as partículas dispersas e a sua nanonização. As 90 mg da hesperidina (Sigma Aldrich) em 30 mL de água destilada foram utilizadas em nanonização.

Tabela 1. Tamanho e potencial zeta das partículas da solução de hesperidina (0,3% em água destilada)

Dias	Tamanho (nm)	Potencial Zeta (mV)	Pdl
0	290,0	-30,7	0,360
30	173,6	-33,1	0,198

Uma nanosuspensão da hesperidina estável e com as partículas de tamanho adequado foi obtida.

Conclusões

Até o presente momento, a fase móvel para separar uma das três substâncias utilizando cromatografia líquida em coluna não foi encontrada. A nanonização da hesperidina resultou na obtenção das partículas nanométricas meio estáveis que aumentariam a atividade anti-oxidante e vasoprotetora para uma aplicação tópica dessa pródroga.

Agradecimentos

CNPq, SAE e FAPESP.

¹ Tasic, L; Tsukamoto, J; Awan, A T; Durán, N. PROCESSO DE OBTENÇÃO DE BIOETANOL, ESPERIDINA E NANOCELULOSE A PARTIR DE BAGAÇO DE LARANJA Patente: Privilégio de Inovação. Número do registro: BR1020130325856, data de depósito: 18/12/2013.

² Ikan, R. Natural Products: A Laboratory Guide. 2nd Ed., USA: Academic Press. **1991**.

³ Sharma, P; Pandey, P; Gupta, R; Roshan, S; Garg, A; Shulka, A; Pasi, A. Isolation and characterization of hesperidin from orange peel. Indo American Journal of Pharmaceutical research **2013**, 3, 3892-3897.

⁴ Torchilin, V. Nanoparticles as Drug Carriers. Imperial College Press, London, **2006**.

⁵ Romero G. B; Chen R; Keck M. C; Müller H. M; Industrial concentrates of dermal hesperidin smartCrystals®— production, characterization & long-term stability. International Journal of Pharmaceutics 2015, 482, 54–60.