

Green methodologies for the synthesis of α -hydroxycyclohexanone.

Julia Nogueira Bezerra*, Bruna Zucoloto da Costa, Anita Jocelyne Marsaioli.

Abstract

Water-based reaction and biocatalysis were applied to synthesize racemic and enantioenriched α -hydroxycyclohexanone.

Key words:

Green chemistry, α-hydroxyketone, Biocatalysis, Natural products. .

Introduction

 $\alpha\text{-hydroxyketones}$ (1) are important building blocks for the synthesis of several chemical and pharmaceutical compounds.

$$R_1$$
 α R_2

Image 1. α-hydroxyketones

These compounds can be obtained using diverse methodologies. However, most of them do not follow the Principles of Green Chemistry.

Therefore, this work aims to synthesize racemic and enatioenriched α -hydroxycyclohexanone (2) using green methodologies, such as Biocatalysis and organic reactions in aqueous environment.

Results and Discussion

Racemic α -hydroxycyclohexanone (2) was synthesized using Onomura's methodology. This procedure is based on the selective oxidation of vicinal diols using KBrO $_3$ and KHSO $_4$ in water (Scheme 1). In this reaction the oxidant bromo-species, such as HBrO $_2$, HBrO, HBr, Br $_2$ and Br $^+$, were generated *in situ* in aqueous medium, corroborating with the green principles.

Image 2. 1,2-dihydroxycyclohexane (3) oxidation using KBrO3 and KHSO4.

The racemic α -hydroxyketone (2) was obtained as a yellow oil with 26% yield, and characterized by GC-MS and ¹H and ¹³C NMR. The low yield can be rationalized by claiming the overoxidation of 2.

Alternatively, α-hydroxycyclohexanone (2) was produced via biocatalysis using styrene oxide (4) as substrate and *Bacillus pumilus* whole cells as biocatalyst (Scheme 2).

$$(4) \qquad \xrightarrow{EH} \qquad OH \qquad OH \qquad OH$$

Scheme 2. Cyclohexene oxide **(4)** biotransformation catalyzed by *Bacillus pumilus* whole cells. EH: epoxide hydrolase, ADH: dehydrogenase.

The biotransformation of cyclohexene oxide (4, 1 mg/mL) was conducted in borate buffer (pH 7.4, 50 mM) at 28 $^{\circ}$ C and 200 rpm.

 $\alpha\text{-hydroxycyclohexanone}$ (2) was obtained as sole product after 48 h of reaction. Trace amounts of diol (3) was detected with 24 h, which indicates that the biotransformation reaction involves at least two steps: 1) styrene oxide (4) hydrolysis catalyzed by an epoxide hydrolase (EH) and 2) diol 3 dehydrogenation catalyzed by alcohol dehydrogenase (ADH).

The biocatalytic product was also fully characterized by GC-MS and NMR. Enantiomeric excess was determined by chiral GC-FID, revealing that α -hydroxyketone (3) was produced in 85% ee.

Further studies will be developed in order to determine the absolute configuration of the α -hydroxycyclohexanone. Additionally, these two green methodologies will be evaluated for the efficient production of additional α -hydroxyketones of interest

Conclusions

In this work, a water-based organic reaction and a biocatalytic methodology were successfully applied to the synthesis of α -hydroxycyclohexanone. The biotransformation of cyclohexene oxide into $\mathbf{2}$ by B. pumilus whole cells is certainly encouraging and shall be applied to other molecules of interest.

Acknowledgement

FAPESP (2011/51278-0, 2014/22967-3), CNPq, ANP-Petrobrás.

William, J.M.; Kuriyama, M.; Onomura, O. Tetrahedron Lett., 2014, 55, 6589-6592

Zhang, J.; Wu, S. Wu, J. Li, Z. ACS Catal., 2015, 5, 51-58.